\(y = 2^{x^2-1}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

`a)TXĐ: R`

`b)TXĐ: R\\{0}`

`c)TXĐ: R\\{1}`

`d)TXĐ: (-oo;-1)uu(1;+oo)`

`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`

`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`

`h)TXĐ: (-oo;0) uu(2;+oo)`

`k)TXĐ: R\\{1/2}`

`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`

`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`

`<=>x > 2`

   `=>TXĐ: (2;+oo)`

18 tháng 11 2023

câu l) $x^2-1 > 0$ thì giải ra 2 nghiệm $x < -1, x > 1$ mới đúng chứ nhỉ?

3 tháng 8 2020

Bạn kiểm tra lại đề. Và vào hoc 24 để đăng nhé! 

Làm câu cuối:

TXĐ: \(x\in\)[ 0 ; + vô cùng ) 

\(y'=\frac{1}{2\sqrt{x}}-1=0\Leftrightarrow2\sqrt{x}=1\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)

Vẽ bảng biến thiên: 

....

Từ bảng biên thiên: 

Hàm số đồng biến trong khoảng ( 0 ; 1/4 ) 

Hàm số nghịch biên trong khoảng ( 1/4 ; + dương vô cùng)

31 tháng 3 2017

a) Tập xác định : D = R { 1 }. > 0, ∀x 1.

Hàm số đồng biến trên các khoảng : (-; 1), (1 ; +).

b) Tập xác định : D = R { 1 }. < 0, ∀x 1.

Hàm số nghịch biến trên các khoảng : (-; 1), (1 ; +).

c) Tập xác định : D = (- ; -4] ∪ [5 ; +).

∀x ∈ (- ; -4] ∪ [5 ; +).

Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (- ; -4) và đồng biến trên khoảng (5 ; +).

d) Tập xác định : D = R { -3 ; 3 }. < 0, ∀x ±3.

Hàm số nghịch biến trên các khoảng : (- ; -3), (-3 ; 3), (3 ; +).

NV
28 tháng 3 2019

Câu 1: Xét trên miền [1;4]

Do \(f\left(x\right)\) đồng biến \(\Rightarrow f'\left(x\right)\ge0\)

\(x\left(1+2f\left(x\right)\right)=\left[f'\left(x\right)\right]^2\Leftrightarrow x=\frac{\left[f'\left(x\right)\right]^2}{1+2f\left(x\right)}\Leftrightarrow\frac{f'\left(x\right)}{\sqrt{1+2f\left(x\right)}}=\sqrt{x}\)

Lấy nguyên hàm 2 vế:

\(\int\frac{f'\left(x\right)dx}{\sqrt{1+2f\left(x\right)}}=\int\sqrt{x}dx\Leftrightarrow\int\left(1+2f\left(x\right)\right)^{-\frac{1}{2}}d\left(f\left(x\right)\right)=\int x^{\frac{1}{2}}dx\)

\(\Leftrightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+C\)

Do \(f\left(1\right)=\frac{3}{2}\Rightarrow\sqrt{1+2.\frac{3}{2}}=\frac{2}{3}.1\sqrt{1}+C\Rightarrow C=\frac{4}{3}\)

\(\Rightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+\frac{4}{3}\)

Đến đây có thể bình phương chuyển vế tìm hàm \(f\left(x\right)\) chính xác, nhưng dài, thay luôn \(x=4\) vào ta được:

\(\sqrt{1+2f\left(4\right)}=\frac{2}{3}4.\sqrt{4}+\frac{4}{3}=\frac{20}{3}\Rightarrow f\left(4\right)=\frac{\left(\frac{20}{3}\right)^2-1}{2}=\frac{391}{18}\)

NV
28 tháng 3 2019

Câu 2:

Diện tích hình phẳng cần tìm là hai miền đối xứng qua Oy nên ta chỉ cần tính trên miền \(x\ge0\)

Hoành độ giao điểm: \(sinx=x-\pi\Rightarrow x=\pi\)

\(S=2\int\limits^{\pi}_0\left(sinx-x+\pi\right)dx=4+\pi^2\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)

\(\Rightarrow2a+b^3=9\)

31 tháng 3 2017

a) Tập xác định : R ; y' =-4x3 + 16x = -4x(x2 - 4);

y' = 0 ⇔ x = 0, x = ±2 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' =4x3 - 4x = 4x(x2 - 1);

y' = 0 ⇔ x = 0, x = ±1 .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ; y' =2x3 + 2x = 2x(x2 + 1); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

d) Tập xác định : R ; y' = -4x - 4x3 = -4x(1 + x2); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

.

19 tháng 9 2020

bn lm dài thế chi tiết nx mn tick cho bn này nè mk hok r nên bt

31 tháng 3 2017

a) y′=6x2+6x−36=6(x2+x−6)y′=6x2+6x−36=6(x2+x−6)

y’= 0 ⇔ x2+ x – 6= 0 ⇔ x=2; x=-3

Bảng biến thiên :

Hàm số đạt cực đại tại x = -3 , y = y(-3) = 71

Hàm số đạt cực tiểu tại x = 2 , y(ct) = y(2) = -54

b) y’ = 4x3 + 4x = 4x(x2 + 1); y’ = 0 ⇔ x = 0.

Bảng biến thiên :

Hàm số đạt cực tiểu tại x = 0 , y(ct) = y(0) = -3

c) Tập xác định : D = R\{0}

Bảng biến thiên :

Hàm số đạt cực đại tại x = -1 , y = y(-1) = -2 ;

Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 2.

d) Tập xác định : D = R.

y’ = 3x2(1 – x)2 + x3 . 2(1 – x)(-1) = x2 (1 – x)[3(1 – x) - 2x] = x2 (x – 1)(5x – 3) .

y’ = 0 ⇔ x = 0, x =, x = 1.

Bảng biến thiên :

Hàm số đạt cực đại tại x = , y = = ;

Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 0 .

e) Tập xác định : D = R.

Hàm số đạt cực tiểu tại

6 tháng 11 2022

fhghfvfdfvrf

lon me may beo

31 tháng 3 2017

a) y′=3x+2(m+3)x=x[3x+2(m+3)];y′=0⇔x1=0y′=3x2+2(m+3)x=x[3x+2(m+3)];y′=0⇔x1=0

hoặc x2=−2m+63x2=−2m+63

Xảy ra hai trường hợp đối với dấu của y':

Rõ ràng, để hàm số có điểm cực đại tại x = -1 ta phải có

x2=−2m+63=−1⇔m=−32x2=−2m+63=−1⇔m=−32

(Chú ý : trường hợp x1 = x2 thì hàm số không có cực trị).

b) (Cm) cắt Ox tại x = -2 ⇔ -8 + 4(m + 3) + 1 - m = 0 ⇔ m=−53m=−53

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)

Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:

\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)

Giả sử \(a=\log_yx=3\)\(b=\log_xy=\frac{1}{3}\)

\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 1:

\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)

Gọi hoành độ của M là \(x_M\)

Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:

\(f'(x_M)=3x_M^2-6x_M=9\)

\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$

\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)

Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)

Đáp án B

Câu 2:

Gọi hoành độ tiếp điểm là $x_0$

Hệ số góc của tiếp tuyến tại tiếp điểm là:

\(f'(x_0)=x_0^2-4x_0+3\)

Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)

\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)

Khi đó: PTTT là:

\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )

Do đó \(y=3x+4\Rightarrow \) đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 3:

PT hoành độ giao điểm:

\(\frac{2x+1}{x-1}-(-x+m)=0\)

\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)

Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)

\(\Leftrightarrow m^2-6m-3> 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)

Có 3 giá trị m thỏa mãn.

31 tháng 3 2017

a) Tập xác định: R; y' = 3(1 - x2); y' = 0 ⇔ x = ± 1 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' = 3x2 + 8x + 4; y' = 0 ⇔ x= -2, x = .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ;

y' = 3x2 + 2x + 9 > 0, ∀x. Vậy hàm số luôn đồng biến, không có cực trị.

Bảng biến thiên :

Đồ thị hàm số như hình bên.

d) Tập xác định : R ;

y' = -6x2 ≤ 0, ∀x. Vậy hàm số luôn nghịch biến, không có cực trị.

Bảng biến thiên :

Đồ thị hàm số như hình bên.

31 tháng 3 2017

Lời giải hay đó!!!

Nhưng không biết người giải nó có hiểu nó không....gianroi (thở dài)

31 tháng 3 2017

a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;

Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2

Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12

Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.

Bảng biến thiên :

Đồ thị như hình bên.