Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x x 16 = 128
2x = 128 : 16
2 x = 8
2x = 23
3x : 9 = 27
3x = 27 x 9
3x =243
3x = 35
[ 2x + 1 ]3 = 27
2x3 + 13 = 27
2x3 +1 = 27
2x3 = 27 - 1
2x3 = 26

\(2^{x+1}=4=2^2\Rightarrow x+1=2\Rightarrow x=1\)
\(2^{x-1}=4=2^2\Rightarrow x-1=2\Rightarrow x=3\)
\(2^x.4=128=4.32=4.2^5\Rightarrow x=5\)
\(3^{x-2}.9=81=9.9=9.3^2\Rightarrow x-2=2\Rightarrow x=4\)
\(\frac{3^{x+1}}{9}=3\Rightarrow3^{x+1}=27=3^3\Rightarrow x=2\)
\(41-2^x=9\Rightarrow2^x=41-9=32=2^5\Rightarrow x=5\)
Quá 20h rồi không biết được ko

\(3^n:81=27\)
\(\Rightarrow3^n=2187\)
\(\Rightarrow n=7\)

BÀI 1 dễ òi nên k giải nữa nha, chỉ cần ghép các số ( 1;2;3 ) số đầu, liên tiếp dần là đc nha bạn.
Bài 2:
\(8^4\cdot16^5=\left(2^3\right)^4\cdot\left(2^4\right)^5=2^{12}\cdot2^{20}=2^{32}\)
\(5^{40}\cdot125^7\cdot625^3=5^{40}\cdot\left(5^3\right)^7\cdot\left(5^4\right)^3=5^{40}\cdot5^{21}\cdot5^{12}=5^{73}\)
\(27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\)
\(10^3\cdot100^5\cdot1000^4=10^3\cdot\left(10^2\right)^5\cdot\left(10^3\right)^4=10^3\cdot10^{10}\cdot10^{12}=10^{25}\)

a) x8 : x2 = 16
x6 = 16 = ... ( chỗ này bn xem có số nào mũ 6 = 16 ko nha)
...
b) x3.x2.x-4 = 60
x3+2-4 = 60
x-1 = 60 = (1/60)-1
=> x = 1/60
?
Mình giải chi tiết cho bạn nha:
Ta có phương trình:
\(3^{x} + 9^{x} = 81\)
Nhận xét: \(9^{x} = \left(\right. 3^{2} \left.\right)^{x} = \left(\right. 3^{x} \left.\right)^{2}\).
Đặt \(a = 3^{x} \textrm{ } \left(\right. a > 0 \left.\right)\).
Phương trình trở thành:
\(a + a^{2} = 81\)
Sắp xếp lại:
\(a^{2} + a - 81 = 0\)
Giải phương trình bậc 2:
\(\Delta = 1^{2} - 4 \cdot 1 \cdot \left(\right. - 81 \left.\right) = 1 + 324 = 325\) \(a = \frac{- 1 \pm \sqrt{325}}{2} = \frac{- 1 \pm 5 \sqrt{13}}{2}\)
Vì \(a = 3^{x} > 0\), chỉ nhận nghiệm dương:
\(a = \frac{- 1 + 5 \sqrt{13}}{2}\)
Suy ra:
\(3^{x} = \frac{- 1 + 5 \sqrt{13}}{2}\)
Lấy log cơ số 3:
\(x = \left(log \right)_{3} \left(\right. \frac{- 1 + 5 \sqrt{13}}{2} \left.\right)\)
👉 Vậy nghiệm là:
\(x = \left(log \right)_{3} \left(\right. \frac{- 1 + 5 \sqrt{13}}{2} \left.\right)\)