Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2^2+4^2+...+20^2\)
\(=1^2.2^2+2^2.2^2+...+2^2.10^2\)
\(=\left(1^2+2^2+...+10^2\right).2^2\)
\(=385.4=1540\)
Vậy S = 1540
Giải:
Đặt \(A=1^2+2^2+...+10^2=385\)
\(\Rightarrow A.2^2=1^2.2^2+2^2.2^2+...+10^2.2^2=385.2^2\)
\(\Rightarrow A.2^2=\left(1.2\right)^2+\left(2.2\right)^2+...+\left(10.2\right)^2=385.2^2\)
\(\Rightarrow A.2^2=\left(2\right)^2+\left(4\right)^2+...+\left(20\right)^2=385.2^2\)
\(\Rightarrow A.2^2=S=385.2^2\)
\(\Rightarrow S=385.4\)
\(\Rightarrow S=1540\)
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
\(a,x=-2\Leftrightarrow A=\left(x-1\right)^3=\left(-2-1\right)^3=-3^3=-27\)
\(b,x=\frac{1}{2}\Rightarrow A=\left(x-1\right)^3=\left(\frac{1}{2}-1\right)^3=\left(-\frac{1}{2}\right)^3=-\frac{1^3}{2^3}=-\frac{1}{8}\)
\(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left(x-2\right)x=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x-1\right)^{x+2}=0\\x-2=0\\x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\\x=0\end{array}\right.\)
NGHĨA LÀ :
\(\frac{3^2}{0,375^2}\)Ý HẢ
Ta có:
\(\frac{3^2}{0,375^2}\)
=\(\frac{9}{0.140625}\)
=64