\(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\)

\(\Leftrightarrow x^2+5x-2x-10-5=1x+5\)

\(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0

\(\Leftrightarrow\) \(x^2+2x-20=0\)

\(\Leftrightarrow x^2+2x-10x-20=0\)

\(\Leftrightarrow\) (x\(^2\) + 2x) - (10x + 20) = 0

\(\Leftrightarrow\) x.(x + 2) - 10.(x + 2) = 0

\(\Leftrightarrow\)

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x\left(x+7\right)}\)

\(\Leftrightarrow\frac{\left(x-4\right).\left(x+7\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\) \(x^2+7x-4x-28-x-7=-7\)

\(\Leftrightarrow x^2+7x-4x-x-28-7+7=0\)

\(\Leftrightarrow\) x\(^2\) + 2x - 28 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 14x - 28 = 0

\(\Leftrightarrow\) (x\(^2\) + 2x) - (14x + 28) = 0

\(\Leftrightarrow\) x.(x + 2) - 14.(x + 2) = 0

\(\Leftrightarrow\) (x - 14) = 0 hoặc (x + 2) = 0

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = -2 (Loại)

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\Leftrightarrow\) \(\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow\) \(x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) 2x\(^2\) - 2x - 8x + 8 = 0

\(\Leftrightarrow\) 2x(x - 1) - 8(x - 1) = 0

\(\Leftrightarrow\) 2x - 8 = 0 hoặc x - 1 = 0

\(\Leftrightarrow\) 2x = 8 hoặc x = 1

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = 1 (Nhận)

Vậy S = {4; 1}

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

\(\Leftrightarrow\) x\(^2\) + x + x + 1 - x\(^2\) + x + x - 1 = 4

\(\Leftrightarrow\) 4x - 4 = 0

\(\Leftrightarrow\) 4 (x - 1) =0

\(\Leftrightarrow\) x - 1 = 0 / 4 = 0

\(\Leftrightarrow\) x = 1 (Nhận)

Vậy S = {1}

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x+1\right)}\)

\(\Leftrightarrow x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow\) 0

Vậy S ={\(\varnothing\)}

0
1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12 \(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\) \(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6 \(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6 \(\Leftrightarrow\) 11x = 9 \(\Leftrightarrow\) x = 0,8 Vậy S = {0,8} 2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12 \(\Leftrightarrow\)...
Đọc tiếp

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)

\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6

\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6

\(\Leftrightarrow\) 11x = 9

\(\Leftrightarrow\) x = 0,8

Vậy S = {0,8}

2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12

\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)

\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x

\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20

\(\Leftrightarrow\) 17x = 7

\(\Leftrightarrow\) x = \(\frac{7}{17}\)

Vậy S = {\(\frac{7}{17}\)}

3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15

\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)

\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3

\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3

\(\Leftrightarrow\) 4x = 2

\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)

Vậy S = {\(\frac{1}{2}\)}

4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12

\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)

\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24

\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24

\(\Leftrightarrow\) 5x = -58

\(\Leftrightarrow\) x = -11,6

Vậy S = {-11,6}

5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)

\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x

\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10

\(\Leftrightarrow\) -8x = -1

\(\Leftrightarrow\) x = \(\frac{1}{8}\)

Vậy S = {\(\frac{1}{8}\)}

6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12

\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)

\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x

\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3

\(\Leftrightarrow\) -5x = -2

\(\Leftrightarrow x=\frac{2}{5}\)

7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)

\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0

\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4

\(\Leftrightarrow\) -3x = -18

\(\Leftrightarrow\) x = 6

Vậy S = {6}

8) x\(^2\) - x - 6 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0

\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0

\(\Leftrightarrow\) (x - 3).(x + 2) = 0

\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0

\(\Leftrightarrow\) x = 3 hoặc x = -2

Vậy S = {3; -2}

0
3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\) Mc: \(x.\left(x-5\right)\) \(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5 \(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0 \(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0 \(\Leftrightarrow\) \(x\) . (\(x\) - 3) =...
Đọc tiếp

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\)

Mc: \(x.\left(x-5\right)\)

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0

\(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0

\(\Leftrightarrow\) \(x\) . (\(x\) - 3) = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) - 3 = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) = 3

Vậy \(x\) = 0 hoặc \(x\) = 3

\(x-5\ne0\Rightarrow x\ne5\)

\(x^2-5\ne0\Rightarrow x\ne5\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {3}

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\frac{x.\left(x-4\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

Mc: \(x.\left(x+7\right)\)

\(\Leftrightarrow x^2-4x-x-7=-7\)

\(\Leftrightarrow x^2-4x-x=-7+7\)

\(\Leftrightarrow\) \(x^2-5x=0\)

\(\Leftrightarrow x.\left(x-5\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x-5=0\)

\(\Leftrightarrow x=0\) hoặc \(x=5\)

Vậy \(x=0\) hoặc \(x=5\)

\(x+7\ne0\Rightarrow x\ne-7\)

\(x^2+7\ne0\Rightarrow x\ne-7\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-7\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {5}

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow TXĐ\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Mc : \(\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) \(2x^2-4x-4x+8=0\)

\(\Leftrightarrow\) \(2x.\left(x-2\right)-4.\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-4\right).\left(x-2\right)=0\)

\(\Leftrightarrow2x-4=0\) hoặc \(x-2=0\)

\(\Leftrightarrow x=2\) hoặc \(x=2\)

\(\Leftrightarrow x=2\) (Loại) hoặc x = 2 (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

MC: \(\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow x^2+x+x+1-x^2+x+x-1=4\)

\(\Leftrightarrow x^2-x^2+x+x+x+x+1-1-4=0\)

\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow4.\left(x-1\right)=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x-1=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x=1\)

\(\Leftrightarrow\) 4 = 0 (Loại) hoặc \(x=1\) (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\)

\(Mc:\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow\) \(x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow x^2-x^2+x+x-4x+x+x=-1+1\)

\(\Leftrightarrow0=0\) (Nhận)

Vậy S = \(\left\{x\in R;x\ne\pm1\right\}\)

0
8 tháng 2 2020

Bài 1 dài dòng quá em :( Rút gọn bớt cũng được thì phải

8 tháng 2 2020

Chị ơi bài 1 em sai cái gì ko ạ ? đk x khác 3 mà đúng ko

25 tháng 6 2019

Tìm x,biết:

a/ x + 5x2 =0

⇔x ( 1 + 5x ) = 0

\(\Leftrightarrow\) x = 0 hoặc 1 + 5x = 0

1) x = 0

2) 1+ 5x = 0 \(\Leftrightarrow\) x = \(\frac{-1}{5}\)

Vậy: S = \(\left\{0;\frac{-1}{5}\right\}\)

b/x+1=(x+1)2

\(\Leftrightarrow\) (x+1) - (x+1)2 = 0

\(\Leftrightarrow\) ( x+ 1)(1-x-1) = 0

\(\Leftrightarrow\) (x+1).(-x) = 0

\(\Leftrightarrow\) x+1 = 0 hoặc x = 0

\(\Leftrightarrow\) x= -1 ; 0

Vậy: S=\(\left\{-1;0\right\}\)

c/ x3+x=0

\(\Leftrightarrow\) x(x2 + 1) = 0

\(\Leftrightarrow\) x = 0 hoặc x2 + 1 = 0

Ta có : x2 + 1 \(\ge\) 0 vs mọi x

Vậy: S = \(\left\{0\right\}\)


d/5x(x2)(2x)=0

\(\Leftrightarrow\) 5x(x-2) + (x - 2) = 0

\(\Leftrightarrow\) (x - 2)(5x+1) = 0

\(\Leftrightarrow\) x - 2 = 0 hoặc 5x+ 1 = 0

\(\Leftrightarrow\) x = 2 hoặc x = \(\frac{-1}{5}\)

Vậy: S = \(\left\{\frac{-1}{5};2\right\}\)

g/ x(x4)+(x4)2=0

⇔ (x - 4)( x+x-4) = 0

\(\Leftrightarrow\) x - 4 = 0 hoặc 2x-4=0

\(\Leftrightarrow\) x = 4 hoặc x = 2

Vậy: S= \(\left\{2;4\right\}\)

h/ x23x=0

⇔x (x-3) = 0

\(\Leftrightarrow\) x = 0 hoặc x = 3

Vậy: S = \(\left\{0;3\right\}\)

Vậy: S= \(\left\{0;3\right\}\)
i/4x(x+1)=8(x+1)

4x(x+1)-8(x+1) = 0

\(\Leftrightarrow\) 4(x+1) (x - 2) = 0

\(\Leftrightarrow\) x+1 = 0 hoặc x - 2 = 0

\(\Leftrightarrow\) x= -1 hoặc x = 2

Vậy: S=\(\left\{-1;2\right\}\)

EM mệt lắm cô@@ ngày e chạy nhìu lắm mồ phải lên 4 tầng liềnTầng 1:We have \(C=\left(\frac{2}{x-2}+\frac{x-1}{2x-x^2}\right):\left(\frac{x+2}{x}-\frac{x-1}{x-2}\right)\)\(=\left(\frac{2x}{x\left(x-2\right)}+\frac{1-x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}-\frac{x^2-x}{x\left(x-2\right)}\right)\)\(=\frac{x+1}{x\left(x-2\right)}:\frac{x-4}{x\left(x-2\right)}\)\(=\frac{x+1}{x-4}\)Tầng...
Đọc tiếp

EM mệt lắm cô@@ ngày e chạy nhìu lắm mồ phải lên 4 tầng liền

Tầng 1:We have \(C=\left(\frac{2}{x-2}+\frac{x-1}{2x-x^2}\right):\left(\frac{x+2}{x}-\frac{x-1}{x-2}\right)\)

\(=\left(\frac{2x}{x\left(x-2\right)}+\frac{1-x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}-\frac{x^2-x}{x\left(x-2\right)}\right)\)

\(=\frac{x+1}{x\left(x-2\right)}:\frac{x-4}{x\left(x-2\right)}\)

\(=\frac{x+1}{x-4}\)

Tầng 2: \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\\x\ne4\end{cases}}\)

We have  \(2x^2+8x=0\)

\(\Leftrightarrow2x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=-4\left(tm\right)\end{cases}}\)

Put x=-4 into C we have 

\(C=\frac{-4+1}{-4-4}=\frac{3}{8}\)

So \(C=\frac{3}{8}\)if x-4

Tầng 3 @@ chân em sắp rời rồi 

Because  \(C=\frac{-1}{2}\)

Then \(\frac{x+1}{x-4}=\frac{-1}{2}\)

\(\Leftrightarrow x=\frac{2}{3}\)

Tầng 4: phù cố lên sắp lên đến đỉnh r

 \(C\in Z\Leftrightarrow x+1⋮x-4\)( em làm kiểu lớp 6 lun nha cô làm cách chia em phải vẽ lâu lắm )

\(\Leftrightarrow x-4+5⋮x-4\)

Because \(x-4⋮x-4\)

so \(5⋮x-4\)

\(\Leftrightarrow x-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow x\in\left\{5;3;9;-1\right\}\left(tm\right)\)

SO...

 

 

1

M lm đg r . Nhg m lm toán ghi TV nha m. TA t đọc đc nhưng kì kì.

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0