K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

a) Ta có ^BEA = 90 - ^ ABE

             ^BEH = 90 - ^EBH 

mà ^ABE = ^EBH ( do BE là tia phân giác)

=> ^BEA=^BEH

Xét tam giác ABE và Tam giác HBE có

           ^ABE=^BEH (gt)

            BE chung 

            ^BEA=^BEH (cmt)

=> tam giác ABE=Tam giác HBE

b) chỉ cần chứng minh BE là đườn trug tuyến là xog

23 tháng 4 2018

Giúp với

23 tháng 4 2018

hình bn tự vẽ nha

a)Xét    Tam giác ABE và  tam giác HBEcó

góc BAE= góc BHE(= 90 độ)

cạnh BE chung

góc ABE=góc HBE(giả thiết)

=>   Tam giác ABE = tam giác HBE(c/h-g/n)

b)  VÌ  Tam giác ABE = tam giác HBE(cmt)

=>BA=BH(2 cạnh tương ứng)

=>B thuộc đường trung trực của AH

=>BE là đường trung trực của đoạn thẳng AH

c) VÌ  Tam giác ABE = tam giác HBE(cmt)

=>AE=HE(2 cạnh tương ứng)

Xét tam giác AEK và tam giác HEC có

góc KAE=CHE(= 90 độ)

AE=HE

góc AEK=góc HEC(= 90 độ)

=>tam giác AEK = tam giác HEC(g.c.g)

=>Ek=EC(2 cạnh tương ứng)

30 tháng 8 2021

a) Vì EH ⊥ BC ( gt )

⇒ △ BHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

                   BE chung

\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\))

⇒ △ BAE =  △ BHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét △ ABI và △ HBI có :

BA = BH [ △ BAE = △ BHE (cmt) ]

\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\) )

BI chung

⇒ Δ ABI = Δ HBI ( c.g.c )

\(\widehat{AIB}=\widehat{AIH}\) ( 2 góc tương ứng )

\(\widehat{AIB}+\widehat{AIH}\) = 1800 ( 2 góc kề bù )

\(\widehat{AIB}=\widehat{AIH}\) = 900

⇒ BI ⊥ AH (1)

Ta có: IA = IH ( Δ ABI = Δ HBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

⇒ I là trung điểm của AH ( 3)

Từ (1) (2) (3) ⇒ BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét Δ KAE và Δ CHE có:

\(\widehat{KAE}=\widehat{CHE}\) ( = 900 )

AE = HE ( Δ BAE = Δ BHE (cmt)

\(\widehat{AEK}=\widehat{HEC}\) ( 2 góc đối đỉnh )

⇒ Δ KAE = Δ CHE ( g.c.g )

⇒ EK = EC ( 2 cạnh tương ứng )

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: Ta có: ΔBAE=ΔBHE

nên BA=BH và EA=EH

hay BE là đường trung trực của AH

26 tháng 5 2021

Bạn tự vẽ hình nhé. Tại mình thấy đề AH vuông góc BC hơi sai nên sẽ sửa là EH nha.

                                                                                               Giải

a, Vì EH \(\perp BC\)( gt ) \(\Rightarrow\)\(\Delta HBE\)vuông tại H.

Xét \(\Delta\)vuông ABE và \(\Delta\) vuông HBE, có :

BE : cạnh chung

góc ABE = góc HBE ( BE là tpg góc ABC )

\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông HBE ( cạnh huyền góc nhọn )

b, Ta có : BA=BH ( \(\Delta\) vuông ABE = \(\Delta\) vuông HBE ) \(\Rightarrow\) \(\Delta BAH\) cân tại B ( đ/n )

Mà góc ABC = 60o ( gt ) \(\Rightarrow\) \(\Delta BAH\) đều.

\(\Rightarrow\)AB=AH=BH ( đ/n ) 

Xét \(\Delta\) vuông ABC, có :

góc ABC + góc BCA = 90o ( 2 góc phụ nhau )

\(\Rightarrow\)60o + góc BCA = 90o       \(\Rightarrow\)góc BCA = 30o

Mà góc EBH = 30o ( vì BE là tpg góc ABC , góc ABC = 60o )

\(\Rightarrow\)góc EBC = góc BCA ( =30o )

\(\Rightarrow\)\(\Delta\)BEC cân tại E ( t/c )  \(\Rightarrow\)BE = EC ( đ/n )

Xét \(\Delta\) vuông HEB và \(\Delta\) vuông HEC , có :

BE=EC ( cmt )

góc EBH = góc ECH ( cmt )

\(\Rightarrow\)\(\Delta\)vuông HEB = \(\Delta\) vuông HEC ( cạnh huyền góc nhọn )

\(\Rightarrow\)BH = CH ( 2 cạnh tương ứng )

c,  Xét \(\Delta\) vuông ABE , có :

góc ABE + góc AEB  = 90o ( 2 góc phụ nhau ), mà góc ABE = 30o ( BE là tpg góc ABC )

\(\Rightarrow\)góc AEB = 60o

Ta có : góc AEB = góc HEB = 60O\(\Delta\) vuông ABE = \(\Delta\) vuông HBE )

Mà BE // HK ( gt ) \(\Rightarrow\) góc HEB = góc EHK = 60o( 2 góc so le trong )

Vì BE // HK ( gt )   \(\Rightarrow\) góc AEB = góc EKH = 60o ( 2 góc đồng vị )

Xét \(\Delta EHK\) , có :

góc EHK + góc EKH + góc KEH = 180o ( tổng 3 góc trong tam giác )

\(\Rightarrow\)60o + 60o + góc KEH = 180o

\(\Rightarrow\)góc KEH = 60o

Ta nhận thấy trong tam giác EKH cả 3 góc đều bằng 60o ( cmt )

\(\Rightarrow\)\(\Delta EKH\)là tam giác đều ( t/c)

d, Xét \(\Delta\) AEI và \(\Delta HEC\) , có :

góc EAI = góc EHC ( = 900 )

AE=EH ( \(\Delta\) vuông ABE = \(\Delta\) vuông HBE )

góc AEI = góc HEC ( 2 góc đối đỉnh )

\(\Rightarrow\Delta AEI=\Delta HEC\)( g-c-g )

\(\Rightarrow\)EI = EC ( 2 cạnh tương ứng )

Xét \(\Delta\) vuông HEC, có :

EC > EH ( cạnh huyền > cạnh góc vuông )           , mà EC = EI ( cmt )

\(\Rightarrow\)EI hay IE > EH          ( đpcm )

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

12 tháng 4 2018

Xét tam giác ABE và tam giác HBE có:

BAE=BHE=900

BE là cạnh chung 

góc ABE=gócHBE

=>tam giác ABE=tam giác HBE(cạnh huyền góc nhọn)

b)Ta có :BA=BH(Vi tam giác ABE=tam giác HBE)

              EA=EH(Vi tam giác ABE=tam giác HBE)

=>BE là đường trung trực của AH 

c)Xét tam giác EKA va tam giác ECH,có

AE=EH(Vi tam giác ABE=tam giác HBE)

góc EAK=góc EHC=900 

góc AEK=góc HEC(2 góc đối đỉnh)

=>tam EAK=tam giác HEC(g.c.g)

=>EK=EC(2 cạnh tương ứng)