K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1

Gọi độ dài các cạnh của tam giác theo thứ tự lần lượt từ nhỏ đến lớn là:

a; b; c

Theo bài ra ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) = \(\frac{a+c}{3+7}\) = \(\frac{40}{10}\) = 4

a = 4 x 3 = 12

b = 4 x 5 = 20

c = 4 x 7 = 28

Kết luận: Độ dài các cạnh của tam giác lần lượt là: 12m ; 20m; 28m





16 tháng 1

em cảm ơn ạ

27 tháng 8 2017

Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có:  x 3 = y 4 = z 5

Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4

Do đó x = 4.3 = 12

Vậy cạnh nhỏ nhất của tam giác là 12m

Đáp án cần chọn là B

28 tháng 5 2018

Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7

Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4

Do đó x = 4.3 = 12

Vậy cạnh nhỏ nhất của tam giác là 12m

Đáp án cần chọn là B

18 tháng 12 2016

Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (m) (c>b>a>0)

Theo bài ra ta có:

\(a:b:c=2:5:9\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{9}\)

\(c-a=14\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{5}=\frac{c}{9}=\frac{c-a}{9-2}=\frac{14}{7}=2\)

\(\Rightarrow\begin{cases}\frac{a}{2}=2\Rightarrow a=2\cdot2=4\\\frac{b}{5}=2\Rightarrow b=2\cdot5=10\\\frac{c}{9}=2\Rightarrow c=2\cdot9=18\end{cases}\) (thỏa mãn)

Vậy độ dài 3 cạnh của tam giác đó lần lượt là 4m; 10m; 18m

 

18 tháng 12 2016

gọi độ dài 3 cạnh của 1 tam giác là a, b,c (a,b,c>0, m)

+vì độ dài 3 cạnh tỉ lệ với 2;5;9

\(\Rightarrow\) \(\frac{a}{2}\) = \(\frac{b}{5}\) = \(\frac{c}{9}\)

+ vì canh nhỏ nhất ngắn hơn cạnh lớn nhất là 14m

\(\Rightarrow\) c-a= 14

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{c-a}{9-2}\)= \(\frac{14}{7}\)= 2

\(\Rightarrow\) a= 2.2= 4

b= 5.2= 10

c= 9.2= 18

vậy độ dài 3 cạnh của 1 tam giác lần lượt là: 4m; 10m; 18m

 

NV
6 tháng 3 2023

Gọi độ dài 3 cạnh tam giác lần lượt là x;y;z

Do độ dài các cạnh tỉ lệ với 3;5;7 nên: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)

Do cạnh lớn nhất dài hơn cạnh nhỏ nhất 40m nên: \(z-x=40\)

Áp dụng tính chất tỉ lệ thức:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{z-x}{7-3}=\dfrac{40}{4}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.10=30\\y=5.10=50\\z=7.10=70\end{matrix}\right.\)

Vậy độ dài 3 cạnh tam giác là 30m, 50m, 70m

Gọi độ dài 3 cạnh của tam giác lần lượt là x, y, z (đơn vị: m)

Ba cạnh tỉ lệ với 3; 4; 5 => \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Cạnh lớn nhất hơn cạnh nhỏ nhất 6m => z - x = 6.

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-x}{5-3}=\frac{6}{2}=3\)

\(\frac{x}{3}=3\Rightarrow x=3.3=9\)

\(\frac{y}{4}=3\Rightarrow y=3.4=12\)

\(\frac{z}{5}=3\Rightarrow z=3.5=15\)

Vậy, độ dài mỗi cạnh của tam giác lần lượt là 9; 12; 15 (m)

@Nghệ Mạt

#cua

28 tháng 11 2021

\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)

Vậy ...

\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)

19 tháng 11 2016

Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )

Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)

+) \(\frac{a}{5}=5\Rightarrow a=25\)

+) \(\frac{b}{4}=5\Rightarrow b=20\)

+) \(\frac{c}{3}=5\Rightarrow c=15\)

Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm

 

19 tháng 11 2016

Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)

Theo đề bài , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)

=> \(\frac{c+10}{7}=\frac{c}{5}\)

=> 5(c + 10) = 7c

=> 5c + 50 = 7c

=> 50 = 2c

=> c = 25

=> a + b = 25 + 10 = 35

Áp dụng tính chất dãy tỉ số , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)

=> a = 3.5 = 15

b = 4.5 = 20

14 tháng 11 2015

Gọi độ dài của các cạnh tam giác đó lần lượt là x;y;z ( cm )

Theo đề bài ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và z - x = 20

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{z-x}{7-3}=\frac{20}{4}=5\)

\(\Rightarrow\frac{x}{3}=5\Rightarrow x=3.5=15\)

\(\frac{y}{5}=5\Rightarrow y=5.5=25\)

\(\frac{z}{7}=5\Rightarrow z=7.5=35\)

Vậy độ dài ba cạnh của tam giác lần lượt là 15 cm , 25 cm , 35 cm

14 tháng 11 2015

theo bài ra ta có:a/3=b/5=c/7

và (a+c)-b=20

áp dụng....ta có;

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+c-b}{3+7-5}=\frac{20}{5}=4\)

từ a/3=4=>a=12

b/5=4=>b=20

c/7=4=>c=28

vậy.......