Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.[-2(8:4) + 15(-3) - (-12)]
= 4.[-2.2 - 45 + 12]
= 4.[-4 - 45 + 12]
= 4.[-49 + 12]
= 4.[-37]
= - 148
3.(25 : 5 - 14 : 2) - 5.(6:2)
= 3.(5 - 7) - 5.3
= 3.(-2) - 15
= - 6 - 15
= -21
a)
A = 2 + 22 + 23 + 24 + ... + 2200
2A = 22 + 23 + 24 + 25 + ... + 2200
2A - A = A = 2200 - 2
b) chịu
c)
C = 4 + 42 + 43 + 44 +... + 4100
4C = 42 + 43 + 44 + 45 + ... + 4101
4C - C = 3C = 4101 - 4
\(\Rightarrow\) C = \(\frac{4^{101}-4}{3}\)
d)
D = 5 + 52 + 53 + ... + 5100
5D = 52 + 53 + 54 + ... + 5101
5D - D = 4D = 5101 - 5
\(\Rightarrow\)D = \(\frac{5^{101}-5}{4}\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Ta có:
A=2+2^2+2^3+2^4+.....+2^100
=> 2A=2^2+2^3+...+2^101
=> 2A-A=A=(2^2+2^3+...+2^101)-(2+2^2+2^3+2^4.....+2^100)
=> A=2^2+2^3+...+2^101-2-2^2-...-2^100
=> A=2^101-2
B=1+3+3^2+3^2+....+3^2009
=> 3B=3+3^2+3^2+....+3^2010
=> 3B-B=2B=3+3^2+3^2....+3^2010-1-3-3^2-3^2-....-3^2009
=> 2B=3^2010-1
=> B=(3^2010-1)/2
C=1+5+5^2+5^3+...+5^1998
=> 5C=5+5^2+5^3+...+5^1999
=> 5C-C=4C=5+5^2+5^3+...+5^1999-1-5-5^2-5^3-...-5^1998
=> 4C=5^1999-1
=> C=(5^1999-1)/4
D=4+4^2+4^3+...+4^n
=> 4D=4^2+4^3+...+4^n+1
=> 4D-D=3D=4^2+4^3+...+4^n+1 - 4-4^2-4^3-...-4^n
=> 3D=4^n+1 - 4
=> 3D=\(\frac{4^{n+1}-4}{3}\)
Ta có : \(A=2+2^2+2^3+.....+2^{100}\)
\(2A=2+2^2+2^3+.....+2^{101}\)
\(2A-A=2^{101}-2\)
\(A=2^{101}-2\)
\(\left(x-3\right):\dfrac{3}{2}=\dfrac{4}{5}\)
=>\(\left(x-3\right)=\dfrac{4}{5}\cdot\dfrac{3}{2}=\dfrac{12}{10}=\dfrac{6}{5}\)
=>\(x=\dfrac{6}{5}+3=\dfrac{6}{5}+\dfrac{15}{5}=\dfrac{21}{5}\)