K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

\(\left(3-2x\right)\left(x+2\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}3-2x>0\\x+2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x>-3\\x+2>0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< \frac{3}{2}\\x>-2\end{cases}}}\)

V...

22 tháng 3 2019

\(\left(3-2x\right)\left(x+2\right)>0\Leftrightarrow2\left(x-\frac{3}{2}\right)\left(x+2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{3}{2}< 0\\x+2>0\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)

11 tháng 12 2016

a, (x-3)2 - 2(x-3) + 1 < 1  <=> (x-3-1)2 <1 <=> (x-4)2 <1 <=> -1< x-4<1 <=> 3<x<5 mặt khác x thuộc z => x= 4

b,\(\frac{x+3}{2x-1}\)< 1 đk x khác 1/2

<=> \(\frac{x+3}{2x-1}\)- 1 <0 <=> \(\frac{x+3-\left(2x-1\right)}{2x-1}\)< 0 <=> \(\frac{2-x}{2x-1}\)< 0 => 2 TH xảy ra\(\orbr{\begin{cases}\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\\\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\end{cases}}\)

TH1 \(\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\)<=> 1/2 <x<2 mà x thuộc z => x= 1

TH2 \(\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\)<=>\(\hept{\begin{cases}x>\frac{1}{2}\\x>2\end{cases}}\)<=> x>2 và x thuộc z

c, x(x+3) >x2(x+3) <=> x(x+3)- x2(x+3) > 0 <=> x(x+3)(1-x)<0 mà x thuộc z

x -3 0 1  
x+3  - 0   +     + 
1-x  +   +   -
x(x+3)(1-x)

  +

(loại)

0

(loại)

  - 

(TM)

 0

(loại)

 

(loại)

 -

(TM)


=> \(\orbr{\begin{cases}-3< x< 0\\x>1\end{cases}}\)vì x thuộc z

TH1 -3<x<0 => x=-1 hoặc x= -2 vì x thuộc z

TH2  x>1 và x thuộc z

d, x< x <=> x - x< 0 <=> x(1-x) < 0 <=> 2 TH xảy ra

TH1 \(\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\)<=> không xảy ra

 TH2 \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)<=> 0 <x<1
 

14 tháng 9 2020

tự đi mà làm nha

24 tháng 7 2017

bộ định không làm bài tập về nhà à , thấy bài cái là lên hỏi

25 tháng 7 2017

có làm nhưng mà quên cách òi giúp cái coi

25 tháng 2 2017

Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.

a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)

\(\Rightarrow3x+1>0\)\(2x-4< 0\)

hoặc \(3x+1< 0\)\(2x-4>0\)

+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)

\(2x-4< 0\Rightarrow x< 2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)

+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)

\(2x-4>0\Rightarrow x>2\left(4\right)\)

Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)

\(\Rightarrow\) vô lý.

Vậy \(\frac{-1}{3}< x< 2.\)

b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)

\(\Rightarrow-x-5>0\)\(2x+1>0\)

hoặc \(-x-5< 0\)\(2x+1< 0\)

+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)

\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)

Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)

+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)

\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)

Từ (7) và (8) suy ra \(x< -5\)

Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).

25 tháng 2 2017

d)\(\left|x+3\right|< 5\)

\(\Rightarrow-5< x+3< 5\)

\(\Rightarrow-8< x< 2\)

27 tháng 5 2016

a) \(\frac{x+2}{3-x}>0\)

ta xét 2 trường hợp

trường hợp 1: x+2>0 và 3-x>0<=> x>-2 và x<3

trường hợp 2:x+2<0 và 3-x<0 <=> x<-2 và x>3

=> -2<x<3 

27 tháng 5 2016

A> P=\(\hept{\begin{cases}x+2>0\\3-x>0\end{cases}}\Rightarrow x>3\) VẬY ........

=\(\hept{\begin{cases}x+2< 0\\3-x< 0\end{cases}}\Rightarrow x< -2\)