\(3^{-1}\cdot3^n+6\cdot3^{n-1}=7\cdot3^6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Xét vế trái  :\(3^{-1}.3^n+6.3^{n-1}=\frac{1}{3}.3^n+6.3^{n-1}=3^{n-1}+6.3^{n-1}=7.3^{n-1}\)

So sánh với vế phải , suy ra \(3^{n-1}=3^6\Leftrightarrow n-1=6\Leftrightarrow n=7\)

17 tháng 8 2016

Búp Bê là bb à

vào đây nha https://coccoc.com/search/math#query=+3%5E%E2%88%921%C2%B73%5En%2B6%C2%B73%5En%E2%88%921%3D7%C2%B736++

1 tháng 8 2016

\(3^{-1}\cdot3^n+6\cdot3^{n-1}=7\cdot3^6\)

\(3^{n-1}+6\cdot3^{n-1}=7\cdot3^6\)

\(3^{n-1}\left(1+6\right)=7\cdot3^6\)

\(3^{n-1}\cdot7=7\cdot3^6\)

\(\Rightarrow3^{n-1}=3^6\)

\(\Rightarrow n-1=6\)

\(n=6+1=7\)

29 tháng 9 2019

\(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)

\(4S=1.2.3.4+2.3.4.4+...+n\left(n+1\right)\left(n+2\right).4\)

\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\)

\(\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(4S=1.2.3.4+2.3.4.5-1.2.3.4+...+\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(4S=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(4S+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(n^2+3n=t\)

\(Đt=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)(là số chính phương)

27 tháng 12 2018

Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

=>2A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+...+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\)\(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)

=>A=\(\dfrac{n^2+3n}{4n^2+12n+8}\)

2 tháng 10 2020

a^2 + b^2 + c^2= ab + bc + ca

2 ( a^2 + b^2 + c^2 ) = 2 ( ab + bc + ca)

2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca

a^2 + a^2 + b^2 + b^2 + c^2+ c^2 – 2ab – 2bc – 2ca = 0

a^2 + b^2 – 2ab + b^2 + c^2 – 2bc + c² + a² – 2ca = 0

(a^2 + b^2 – 2ab) + (b^2 + c^2 – 2bc) + (c^2 + a^2 – 2ca) = 0

(a – b)^2 + (b – c)^2 + (c – a)^2 = 0

Vì (a-b)^2 lớn hơn hoặc bằng 0 với mọi a và b 

     (b-c)^2  lớn hơn hoặc bằng 0 với mọi c và b

     (c-a)^2 lớn hơn hoặc bằng 0 với mọi a và c

=> (a-b)^2 =0  ; (b-c)^2=0 ; (c-a)^2=0

=> a=b ; b=c ; c=a

=>a=b=c

21 tháng 11 2016

e chịu thui

21 tháng 11 2016

\(B=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{n.\left(n+1\right)\left(n+2\right)}\)

\(\Leftrightarrow\frac{2B}{5}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow B=\frac{5}{4}-\frac{5}{2\left(n+1\right)\left(n+2\right)}\)

NV
12 tháng 3 2019

Ta có:

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)\)

Đặt \(A=1.2+2.3+...+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+n\left(n+1\right)\left(n+2-\left(n-1\right)\right)\)

\(\Rightarrow3A=1.2.3-1.2.0+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

\(\Rightarrow1.2+2.3+...+2006.2007=\frac{2006.2007.2008}{2}\)

Vậy pt trở thành:

\(\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)x=\frac{2006.2007.2008}{2}\)

\(\Leftrightarrow\frac{2005}{2.2006.2007}x=2006.2007\)

\(\Rightarrow x=\frac{2.\left(2006.2007\right)^2}{2005}\)

14 tháng 9 2017

Em chỉ làm những bài e biết thôi, thông cảm nhs :D

a/ chịu

b/ \(C=1+7+7^2+.........+7^{50}\)

\(\Leftrightarrow7C=7+7^2+...........+7^{50}+7^{51}\)

\(\Leftrightarrow7C-C=\left(7+7^2+.......+7^{51}\right)-\left(1+7+.....+7^{50}\right)\)

\(\Leftrightarrow6C=7^{51}-1\)

\(\Leftrightarrow C=\dfrac{7^{51}-1}{6}\)

c/ \(A=\dfrac{-1}{4}+\dfrac{7}{3}+\dfrac{3}{4}+\dfrac{9}{2}\)

\(=\left(\dfrac{-1}{4}+\dfrac{3}{4}\right)+\left(\dfrac{7}{3}+\dfrac{9}{2}\right)\)

\(=\dfrac{1}{4}+\dfrac{41}{6}\)

\(=\dfrac{85}{12}\)

d/ Thấy phép tính hơi dài

e/ \(C=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.........+\dfrac{1}{2015.2016.2017}\)

\(\Leftrightarrow2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+.........+\dfrac{2}{2015.2016.2017}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.......+\dfrac{1}{2015.2016}-\dfrac{1}{2016.2017}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2016.2017}\)

\(=\dfrac{1}{2}-\dfrac{1}{4066272}\)

\(=\dfrac{2033136}{4066272}\)

\(\Leftrightarrow C=\dfrac{2033136}{4066272}:2\)

\(\Leftrightarrow C=?\)

9 tháng 12 2017

B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)

B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]

Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.