Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x-1+5.3x-1=162
=>3x-1.6=162
=>3x-1=162:6
=>3x-1=27=33
=>x-1=3
=>x=4
a, 5n+5n+2=650
=>5n+5n.52=650
=>5n(1+25)=650
=>5n.26=650
=>5n=25
=>5n=52
=>n=2
Vậy n=2
a/ \(3^{x-1}+5.3^{x-1}=162\)
=> \(3^{x-1}\left(1+5\right)=162\)
=> \(3^{x-1}.6=162\)
=> \(3^{x-1}=\frac{162}{6}=27\)
=> \(3^{x-1}=3^3\)
=> x - 1 = 3
=> x = 4
3^x-1+5.3^x-1=162
3^x-1.(1+5)=162
3^x-1.6=162
3^x-1=162:6
3^x-1=27
3^x-1=3^3
x-1=3
x=3+1
x=4
a ) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
b ) \(3^{x-1}+5.3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}\left(1+5\right)=162\)
\(\Leftrightarrow3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\Leftrightarrow x=4\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)
\(3^{-1}.3^n+5.3^{n-1}=162\)
\(3^{n-1}+5.3^{n-1}=162\)
\(3^{n-1}\left(5+1\right)=162\)
\(6.3^{n-1}=162\)
\(3^{n-1}=27=3^3\)
=> \(n-1=3\)
\(n=4\)
vậy n=4