Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^3+3x^2y-3xy^2-2x^3=0\)
\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)
\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)
\(\Rightarrow y=2x\)
Thế xuống dưới:
\(x^4-2x^3-x^2+2x+1=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:
\(t^2-2t+1=0\Leftrightarrow t=1\)
\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
\(ĐK:x\ge-2;y\le4\)
\(PT\left(1\right)\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(y^3-6y^2+12y-8\right)=0\\ \Leftrightarrow\left(x-1\right)^3-\left(y-2\right)^3=0\\ \Leftrightarrow\left(x-y+1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y-2\right)+\left(y-2\right)^2\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x-y+1=0\\x^2-4x+xy+y^2-5y+7=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left(x^2+\dfrac{1}{4}y^2+4+xy-2y-4x\right)+\dfrac{3}{4}y^2-3y+3=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y-2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Thay \(x=1;y=2\) vào PT(2) ta thấy ko thỏa mãn
Với \(x-y+1=0\Leftrightarrow y=x+1\), thay vào PT(2)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\left(-2\le x\le3\right)\\ \Leftrightarrow\sqrt{x+2}+\sqrt{3-x}-3=x^3+x^2-4x-4\\ \Leftrightarrow\dfrac{2\sqrt{\left(x+2\right)\left(3-x\right)}-4}{\sqrt{x+2}+\sqrt{3-x}+3}=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow\dfrac{2\left[\left(x+2\right)\left(3-x\right)-4\right]}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=\left(x^2-x-2\right)\left(x+2\right)\\ \Leftrightarrow\left(x^2-x-2\right)\left(x+2\right)+\dfrac{2\left(x^2-x-2\right)}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[x+2+\dfrac{1}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}\right]=0\)
Với \(x\ge-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=2\Rightarrow x=3\end{matrix}\right.\left(tm\right)\)
Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(2;3\right)\right\}\)
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(4x^3-x^2+2x-32+\left(x^3-4\right)\left(\sqrt{x^3-7}-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16\right)+\dfrac{\left(x^3-4\right)\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16+\dfrac{\left(x^3-4\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}\right)=0\)
\(\Leftrightarrow x=2\) (ngoặc đằng sau luôn dương do \(x^3-4=x^3-7+3>0\))
2.
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=x^3+3x^2+3x+1+x+1\)
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=\left(x+1\right)^3+x+1\)
Đặt \(\left\{{}\begin{matrix}2x^3=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3-b^3+a-b=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow2x^3=x+1\Leftrightarrow\left(x-1\right)\left(2x^2+2x+1\right)=0\)
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...