K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2021

2xy^2-10x+y^2=17

(2xy^2+y^2) - (10x+5)=12

y^2(2x+1)-5(2x+1)=12

(2x+1)(y^2-5)=12

Mà x,y nguyên => 2x+1 là số lẻ; y^2-5 là số nguyên

Ta có bảng sau:

2x-113-1-3
y^2-5124-12-4
x120-1
ykhông nguyên3 hoặc -3không tồn tại1 hoặc -1

Kết luận : tồn tại 4 cặp giá trị x,y thỏa mãn

17 tháng 8 2016

Max B=2012

Khi x=0, y=0

tíc mình 

nha

17 tháng 8 2016

B=2012 là   S

B=2134

16 tháng 8 2016

GTLN của B=2012

tíc mình

nha

8 tháng 8 2019

TL:

\(B=2x^2+y^2-2xy-2x+3\)

    \(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)

    \(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)

8 tháng 8 2019

\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)

30 tháng 7 2018

Bài 1:

a)  \(A=x^2+10x+25=\left(x+5\right)^2\) =>  A là số chình phương

b)  \(B=x^2-2x+1=\left(x-1\right)^2\) =>  B là số chính phương

Bài 2:

a)  \(xy-x+y=4\)

\(\Leftrightarrow\)\(x\left(y-1\right)+\left(y-1\right)=3\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y-1\right)=3\)

=>  \(x+1\)và   \(y-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

đến đây bạn làm nốt nha

các câu còn lại tương tự, đưa về pt tích

30 tháng 7 2018

1)
A= x2+10x+25= x2+5x+5x+25=x(x+5)+5(x+5)=(x+5)(x+5)=(x+5)2
=> A là số chính phương
B=x2-2x+1=x2-x-x+1=x(x-1)-(x-1)=(x-1)(x-1)=(x-1)2
=> B là số chính phương
2)
a) \(xy-x+y=4\)
\(\Leftrightarrow x\left(y-1\right)=4-y\)
\(\Leftrightarrow x=\frac{4-y}{y-1}\)
\(\Leftrightarrow x=-1+\frac{3}{y-1}\)
Do x,y nguyên nên \(y-1\inƯ\left(3\right)\)
<=> y-1={-3;-1;1;3}
<=> y={-2;0;2;4}
Vậy (x;y)=(-2;-2);(-4;0);(2;2);(0;4)
b,c,d tương tự
3) 32018=91009<101009 (101009 là số nhỏ nhất có 1010 chữ số)
=>32018 có ít hơn 1010 chữ số
Có face xin link nha :)


 

10 tháng 6 2018

Bài 1:

a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)

..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)

............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)

c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)

..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)

d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)

10 tháng 6 2018

Bài 2:

a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)

b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)

c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)

d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)

17 tháng 3 2019

a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)

= 3x2-2xy+y2+x2-xy+2y2-4x2+y2

= 4y2-3xy

b, = x2-y2+2xy-x2-xy-2y2+4xy-1

= -3y2+5xy

c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2