K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2022

<=> 2x=0 hoặc x-1/7=0

<=> x=0 hoặc x=1/7

19 tháng 7 2019

(3x+5)(2x-7)=0

\(\Leftrightarrow\left[{}\begin{matrix}3x+5=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-5\\2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{3}\\x=\frac{7}{2}\end{matrix}\right.\)

(-5x+2)(-3x-4)=0

\(\Leftrightarrow\left[{}\begin{matrix}\left(-5x+2\right)=0\\\left(-3x-4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x=-2\\-3x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=\frac{-3}{4}\end{matrix}\right.\)

(x-5)(4x-3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\4x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{4}\end{matrix}\right.\)

-2x(x+1)(x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

19 tháng 7 2019

\(\left(3x+5\right).\left(2x-7\right)=0\)

=> \(\left\{{}\begin{matrix}3x+5=0\\2x-7=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}3x=0-5=-5\\2x=0+7=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=\left(-5\right):3\\x=7:2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{5}{3}\\x=\frac{7}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-\frac{5}{3};\frac{7}{2}\right\}\).

\(\left(-5x+2\right).\left(-3x-4\right)=0\)

=> \(\left\{{}\begin{matrix}-5x+2=0\\-3x-4=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}-5x=0-2=-2\\-3x=0+4=4\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}x=\left(-2\right):\left(-5\right)\\x=4:\left(-3\right)\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=\frac{2}{5}\\x=-\frac{4}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{2}{5};-\frac{4}{3}\right\}\).

Mấy câu còn lại bạn làm tương tự nhé.

Chúc bạn học tốt!

a: =>2x-1=4 hoặc 2x-1=-4

=>2x=5 hoặc 2x=-3

=>x=5/2 hoặc x=-3/2

d: =>x=|2|=2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x-y=0\end{matrix}\right.\Rightarrow x=y=1\)

24 tháng 8 2017

a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)

b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)

\(2\ne3\ne4\) nên \(x\in\varnothing\)

c)

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)

Với mọi \(x\ge0\) ta có:

\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)

\(\Leftrightarrow9x+90=x-1\)

\(\Leftrightarrow9x=x-89\)

\(\Leftrightarrow-8x=89\)

\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)

Với mọi \(x< 0\) ta có:

\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)

\(\Leftrightarrow-9x-90=x-1\)

\(\Leftrightarrow-9x=x+89\)

\(\Leftrightarrow-10x=89\)

\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)

d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)

25 tháng 2 2017

Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.

a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)

\(\Rightarrow3x+1>0\)\(2x-4< 0\)

hoặc \(3x+1< 0\)\(2x-4>0\)

+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)

\(2x-4< 0\Rightarrow x< 2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)

+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)

\(2x-4>0\Rightarrow x>2\left(4\right)\)

Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)

\(\Rightarrow\) vô lý.

Vậy \(\frac{-1}{3}< x< 2.\)

b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)

\(\Rightarrow-x-5>0\)\(2x+1>0\)

hoặc \(-x-5< 0\)\(2x+1< 0\)

+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)

\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)

Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)

+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)

\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)

Từ (7) và (8) suy ra \(x< -5\)

Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).

25 tháng 2 2017

d)\(\left|x+3\right|< 5\)

\(\Rightarrow-5< x+3< 5\)

\(\Rightarrow-8< x< 2\)

19 tháng 7 2018

a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)

b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)

- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)

Vậy \(x\ge\frac{1}{2}\)

c,d tương tự b

e, tương tự a

16 tháng 6 2018

a)3.(2x+8)-(5x+2)=0

6x+24-5x-2=0

x+24-2=0

x+22=0

x=0-22

x=-22

b)5(7-3x)+7(2+2x)=0

35-15x+14+14x=0

35-x+14=0

35-x=0-14

35-x=-14

x=35+14

x=49

chúc bạn học tốt nha

19 tháng 11 2022

a: =>(x-1)(y+4)=15

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1;y+4\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(3;5\right);\left(5;3\right)\right\}\\\left(x-1;y+4\right)\in\left\{\left(-1;-15\right);\left(-15;-1\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(2;11\right);\left(16;-3\right);\left(4;1\right);\left(6;-1\right);\left(0;-19\right);\left(-14;-5\right);\left(-2;-9\right);\left(-4;-7\right)\right\}\)

d: =>xy+3x-y-3=3

=>(y+3)(x-1)=3

\(\Leftrightarrow\left(x-1;y+3\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(2;0\right);\left(4;-2\right);\left(0;-6\right);\left(-2;-4\right)\right\}\)

b: =>(2x+1)*y=7

=>\(\left(2x+1;y\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(0;7\right);\left(3;1\right);\left(-1;-7\right);\left(-4;-1\right)\right\}\)