\(2x\sqrt{x^2+2}+\left(2x+3\right)\sqrt{x^2+2x+3}=\sqrt{x^2+2}-4x-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

Em ko chắc đâu!

ĐK: chắc là x thuộc R:v

PT \(\Leftrightarrow\left(2x-1\right)\sqrt{x^2+2}+\left(2x+3\right)\sqrt{x^2+2x+3}+4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\sqrt{x^2+2}-\frac{3}{2}\right)+10x+5+\left(2x+3\right)\left(\sqrt{x^2+2x+3}-\frac{3}{2}\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{x^2-\frac{1}{4}}{\sqrt{x^2+2}+\frac{3}{2}}\right)+10\left(x+\frac{1}{2}\right)+\left(2x+3\right)\left(\frac{x^2+2x+\frac{3}{4}}{\sqrt{x^2+2x+3}+\frac{3}{2}}\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}{\sqrt{x^2+2}+\frac{3}{2}}\right)+10\left(x+\frac{1}{2}\right)+\left(2x+3\right)\left(\frac{\left(x+\frac{1}{2}\right)\left(x+\frac{3}{2}\right)}{\sqrt{x^2+2x+3}+\frac{3}{2}}\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left[\frac{\left(2x-1\right)\left(x-\frac{1}{2}\right)}{\sqrt{x^2+2}+\frac{3}{2}}+10+\frac{\left(2x+3\right)\left(x+\frac{3}{2}\right)}{\sqrt{x^2+2x+3}}\right]=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left[\frac{2x^2-2x+\frac{1}{2}}{\sqrt{x^2+2}+\frac{3}{2}}+10+\frac{2x^2+6x+\frac{9}{2}}{\sqrt{x^2+2x+3}}\right]=0\)

Dễ thấy cái ngoặc to vô nghiệm suy ra \(x=-\frac{1}{2}\)

14 tháng 7 2019

số xấu quá (phân số) khi liên hợp khiến em nhức đầu @@ nên em ko biết có tính sai hay ko nữa!

5 tháng 4 2016

Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)

Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB

Gọi G là trọng tâm của tam giác ABC, ta có :

\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)

Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC

Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có

\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)

         \(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)

bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)

Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\)  (1)

Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\)   (2)

         \(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)

        \(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)

        \(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)

        \(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\)        (3)

Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)

Hơn nữa, bằng kiểm tra trực tiếp ta thấy  \(P\ge\sqrt{3}\) khi x=0

Vậy min P=\(\sqrt{3}\)

 
8 tháng 2 2017

\(\left(1\right)\Leftrightarrow\left(x-2y\right)\left(2x^2+y^2+1\right)=0\Leftrightarrow x=2y\).Thay vào (2) ta có phương trình \(\sqrt{4x^2+x+6}+2x=1+5\sqrt{x+1}\left(3\right)\)

\(\Leftrightarrow\sqrt{4x^2+x+6}-\left(1-2x\right)=5\sqrt{x+1}\Leftrightarrow\frac{x+1}{\sqrt{4x^2+x+6}+1-2x}=\sqrt{x+1}\)

\(\Leftrightarrow\left[\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt{4x^2+x+6}+1-2x=\sqrt{x+1}\left(4\right)\end{matrix}\right.\)

Kết hợp (3) và (4) ta được \(2\sqrt{x+1}=2x-1\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\4x^2-8x+3=0\end{matrix}\right.\Leftrightarrow x=\frac{2+\sqrt{7}}{2}\)

P/S:Phương trình đã cho có 2 nghiệm :\(x=-1;x=\frac{2+\sqrt{7}}{2}\)

8 tháng 2 2017

a jỏi wá, k bit lên 12 e có làm dc k