Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)
e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)
Vậy ....
a. \(4x^2-3x-7=0\) => \(\left(4x-7\right)\left(x+1\right)=0\)
=>\(\left[\begin{array}{nghiempt}x=\frac{7}{4}\\x=-1\end{array}\right.\)
b. \(5x^2\left(x+\frac{1}{5}\right)\left(x+1\right)=0\)
=> \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{5}\\x=-1\end{array}\right.\)
a) \(x^2-2=0\)
\(\Rightarrow x^2-\left(\sqrt{2}\right)^2=0\)
\(\Rightarrow\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+\sqrt{2}\\x=0-\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}.\)
b) \(x^2+\frac{7}{4}=\frac{23}{4}\)
\(\Rightarrow x^2=\frac{23}{4}-\frac{7}{4}\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}.\)
c) \(\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2=0^2\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=0+1\)
\(\Rightarrow x=1\)
Vậy \(x=1.\)
g) \(\sqrt{x}=0\)
\(\Rightarrow x=0\)
Vậy \(x=0.\)
h) \(\sqrt{x}=4\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{4}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{16}\)
\(\Rightarrow x=16\)
Vậy \(x=16.\)
i) \(\sqrt{x}-\frac{1}{7}=0\)
\(\Rightarrow\sqrt{x}=0+\frac{1}{7}\)
\(\Rightarrow\sqrt{x}=\frac{1}{7}\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{\frac{1}{7}}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\frac{1}{49}}\)
\(\Rightarrow x=\frac{1}{49}\)
Vậy \(x=\frac{1}{49}.\)
Chúc bạn học tốt!
a, (3x+2)/(5x+7)=3/4
=>4(3x+2)=3(5x+7)
=>12x+8=15x+21
=>12x-15x=21-8
=>-3x=13
=>x=-1
Vậy...
b, 2x-(x-1/7)=0
=>2x-x+1/7=0
=>x=-1/7
Vậy....
a,=> (3x+2).4=(5x+7).3
=>12x+8=15x+21
=>12x+8-15x-21=0
=>-3x=13
=.x=\(\frac{-13}{3}\)
b,<=>2x-x+1/7=0
<=>x=-1/7
\(\left|2x+7\right|-\left|5x+4\right|=0\)
\(\Leftrightarrow\)\(\left|2x+7\right|=\left|5x+4\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+7=5x+4\\2x+7=-5x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}5x-2x=7-4\\2x+5x=-4-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}3x=3\\7x=-11\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=\frac{-11}{7}\end{cases}}}\)
...
\(\left|2x+7\right|-\left|5x+4\right|=0\)
\(\Rightarrow\left|2x+7\right|=\left|5x+4\right|\)
\(\Rightarrow\hept{\begin{cases}2x+7=5x+4\\2x+7=-5x+4\end{cases}}\Rightarrow\hept{\begin{cases}5x-2x=7-4\\-5x-2x=7+4\end{cases}}\Rightarrow\hept{\begin{cases}3x=3\\-7x=11\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{11}{7}\end{cases}}\)