K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

(2x + 7)2 = 9(x + 2)2

(2x + 7)2 - 9(x + 2)2 = 0

áp dụng hằng đẳng thức hiệu 2 bình phương:

[2x + 7 - 3(x + 2)] . [2x + 7 + 3(x + 2)] = 0

(2x + 7 - 3x - 6)(2x + 7 + 3x + 6) = 0

(1 - x)(5x + 13) = 0

vậy 1 - x = 0 hoặc 5x + 13 = 0

hay x = 1 hoặc x = -13/5

\(\left(2x+7\right)^2=9\left(x+2\right)^2\)

<=>\(\left(2x+7\right)^2=\left(3x+6\right)^2\)

,<=>\(2x+7=3x+6\)

<=>\(2x-3x=6-7\)

<=>\(-x=-1\)

<=>\(x=1\)

31 tháng 3 2020

\(a,\left(2x-1\right)^2=49\)

\(\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\)

\(\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

\(b,\left(2x+7\right)^2=9\left(x+2\right)^2\)

\(4x^2+28x+49=9x^2+36x+36\)

\(4x^2+28x+49-9x^2-36x-36=0\)

\(-5x^2-8x+13=0\)

\(5x^2+13-5x-13=0\)

\(x\left(5x+13\right)-1\left(5x+13\right)=0\)

\(\left(x-1\right)\left(5x+13\right)=0\)

\(\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=-\frac{13}{5}\end{matrix}\right.\)

31 tháng 3 2020

\(c,4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\left(4x+14\right)^2-\left(3x+9\right)^2=0\)

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(x=-5\)

\(d,\left(5x-3\right)^2-\left(4x-7\right)^2=0\)

\(25x^2-30x+9-16x^2+56x-49=0\)

\(9x^2+26x-40=0\)

\(9x^2+36x-10x-40=0\)

\(9x\left(x+4\right)-10\left(x+4\right)=0\)

\(\left(9x-10\right)\left(x+4\right)=0\)

\(\left[{}\begin{matrix}9x-10=0\\x+4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{10}{9}\\x=-4\end{matrix}\right.\)

23 tháng 10 2016

-_- bài này hôm qua lm rùi

12 tháng 9 2017

bài này bạn nhân lần lượt ra, cuối cùng hết giá trị của x, cò lại số tự nhiên. vậy là đã cm được biểu thức k phụ thuộc vào giá trị của biến rồi đó.

VD: 

\(\left(x-3\right)\left(x^2+3x+9\right)-x^3+7\)

\(=x^3+3x^2+9x-3x^2-9x-27-x^3+7\)

\(=-20\)

1 tháng 7 2018

a/ \(25x^2-9=0\)

<=> \(\left(5x-3\right)\left(5x+3\right)=0\)

<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)

b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

<=> \(x^2+8x+16-x^2+8x-9=16\)

<=> \(16x+7=16\)

<=> \(16x=9\)

<=> \(x=\frac{9}{16}\)

1 tháng 7 2018

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)

Vậy S = {3/5 ; -3/5}

b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)

\(\Leftrightarrow9=0\left(vl\right)\)

Vậy S = \(\varnothing\)

6 tháng 9 2020

1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5

=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0

=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0

=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0

=> -2x2 + 3 = 0

=> -2x2 = -3

=> x2 = 3/2

=> x = \(\pm\sqrt{\frac{3}{2}}\)

2. \(\left(x+5\right)^2-6=0\)

=> x2 + 10x + 25 - 6 = 0

=> x2 + 10x + 19 = 0

=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)

3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)

=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0

=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0

=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0

=> -2x + 27 = 0

=> -2x = -27

=> x = 27/2

4. \(\left(x-2\right)^3-x^3+6x^2=7\)

=> x3 - 6x + 12x - 8 - x3 + 6x2 = 7

=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7

=> 12x - 8 = 7

=> 12x = 15

=> x = 5/4

5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)

=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12

=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12

=> -6x + 12 = 12

=> -6x = 0

=> x = 0

6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)

=> 48x - 5x - 2 = 0

=> 43x - 2 = 0

=> 43x = 2

=> x = 2/43

Còn bài cuối tự làm :>

6 tháng 9 2020

Anh Sang làm cầu kì quá ;-;

1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5

<=> x3 + 8 - x3 - 2x2 = 5

<=> 8 - 2x2 = 5

<=> 2x2 = 3

<=> x2 = 3/2

<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)

<=> \(x=\pm\sqrt{\frac{3}{2}}\)

2. ( x + 5 )2 - 6 = 0

<=> ( x + 5 )2 - ( √6 )2 = 0

<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0

<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)

3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x

<=> x3 + 27 - x3 = 2x

<=> 27 = 2x

<=> x = 27/2

4. ( x - 2 )3 - x3 + 6x2 = 7

<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7

<=> 12x - 8 = 7

<=> 12x = 15

<=> x = 15/12 = 5/4

5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12

<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12

<=> 3x2 - 12x + 12 + 6x - 3x2 = 12

<=> -6x + 12 = 12

<=> -6x = 0

<=> x = 0

6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0

<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0

<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0

<=> 43x - 2 = 0

<=> 43x = 2

<=> x = 2/43

7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0

<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0

<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0

<=> -39x + 4 = 0

<=> -39x = -4

<=> x = 4/39

a) Ta có: \(\left(2x+7\right)^2=9\left(x+2\right)^2\)

\(\Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\)

\(\Leftrightarrow4x^2+28x+49-9\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow4x^2+28x+49-9x^2-36x-36=0\)

\(\Leftrightarrow-5x^2-8x-13=0\)

\(\Delta=\left(-8\right)^2-4\cdot\left(-5\right)\cdot\left(-13\right)=-196\)

\(\Delta< 0\) nên phương trình vô nghiệm

Vậy: \(x\in\varnothing\)

8 tháng 4 2020

a) \(\left(x+2\right)^2-9\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(3x-6\right)^2=0\)

\(\Leftrightarrow\left(x+2+3x-6\right)\left(x+2-3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x-4\right)=0\\\left(8-2x\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

b)\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\frac{23}{7}\end{matrix}\right.\)

c) \(\left(5x^2-2x+10\right)^2-\left(3x^2+10x-8\right)^2=0\)

\(\Leftrightarrow\left(5x^2-2x+10-3x^2-10x+8\right)\left(5x^2-2x+10+3x^2+10x-8\right)=0\)

\(\Leftrightarrow\left(2x^2-5x+18\right)\left(8x^2+8x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=3\end{matrix}\right.\)

13 tháng 4 2020

Câu c sai một tí, chắc nhầm =))

19 tháng 7 2017

Làm 2 câu các câu còn lại tương tự!

a, \(E=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2x-2x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\)

Hay \(E\le-1\) với mọi giá trị của \(x\in R\).

Để \(E=-1\) thì \(-\left[\left(x-2\right)^2+1\right]=-1\)

\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy.............

b, \(F=-2x^2+2x-1=-\left(2x^2-2x+1\right)\)

\(=-\left(2x^2-x-x+\dfrac{1}{2}-\dfrac{3}{2}\right)\)

\(=-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x-1\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\Rightarrow-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\le\dfrac{3}{2}\)

Hay \(F\le\dfrac{3}{2}\) với mọi giá trị của \(x\in R\).

Để \(F=\dfrac{3}{2}\) thì \(-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]=\dfrac{3}{2}\)

\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

Vậy.............

20 tháng 7 2017

7, \(G=-4x^2+12x-7\)

\(=-4\left(x^2-3x+\dfrac{7}{4}\right)\)

\(=-4\left(x^2-\dfrac{3}{2}.x.2+\dfrac{9}{4}-\dfrac{2}{4}\right)\)

\(=-4\left(x-\dfrac{3}{2}\right)^2+2\le2\)

Dấu " = " khi \(-4\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(MAX_G=2\) khi \(x=\dfrac{3}{2}\)

8, \(H=-2x^2+4x-15\)

\(=-2\left(x^2-2x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-2x+1+\dfrac{13}{2}\right)\)

\(=-2\left(x-1\right)^2-13\le-13\)

Dấu " = " khi \(-2\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MAX_H=-13\) khi x = 1

9, \(K=-x^4+2x^2-2\)

\(=-\left(x^2-2x^2+1+1\right)\)

\(=-\left(x^2-1\right)^2-1\le-1\)

Dấu " = " khi \(-\left(x^2-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(MAX_K=-1\) khi \(x=\pm1\)

10, \(J=-3x^2+15x-9\)

\(=-3\left(x^2-\dfrac{5}{2}.x.2+\dfrac{10}{4}+\dfrac{2}{4}\right)\)

\(=-3\left(x-\dfrac{5}{2}\right)^2-\dfrac{3}{2}\le\dfrac{-3}{2}\)

Dấu " = " khi \(-3\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(MAX_J=\dfrac{-3}{2}\) khi \(x=\dfrac{5}{2}\)