
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)
a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+4z=8\\2x-y+3z=6\\2x-6y+8z=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\3y+z=2\\8y-4z=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\12y+4z=8\\8y-4z=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\20y=-2\\3y+z=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2z=4\\y=-\dfrac{1}{10}\\z=2-3y=2+\dfrac{3}{10}=\dfrac{23}{10}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{10}\\z=\dfrac{23}{10}\end{matrix}\right.\)

a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)

a)Ta có:\(\frac{x}{3}=\frac{y}{4}=\frac{2x}{6}=\frac{3y}{12}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{2x-3y}{6-12}=\frac{-216}{-6}=36\)
\(\Rightarrow\)\(\begin{cases}\frac{2x}{6}=36\\\frac{3y}{12}=36\end{cases}\)\(\Rightarrow\)\(\begin{cases}2x=6\\3y=3\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=1\end{cases}\)
Vậy x=3;y=1
b)Đặt \(\frac{x}{2}=\frac{y}{7}=k\)(1)
\(\Rightarrow x=2k;y=7k\)(2)
Mà x.y=126
Vậy từ (2) suy ra:2k.7k=126
14k2=126
k2=9=32=(-3)2
Do đó k=3;-3
Từ (1) suy ra:x=2.3=6;y=3.7=21
x=-2.3=-6;y=-3.7=-21
Vậy cặp (x;y) TM là:(6;21)(-6;-21)

Áp dụng dãy tĩ số = nhau: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{2.3+3.5-7}=\dfrac{-14}{14}=-1\)
\(\dfrac{x}{3}=-1\Leftrightarrow x=-3\)
\(\dfrac{y}{5}=-1\Leftrightarrow y=-5\)
\(\dfrac{z}{7}=-1\Leftrightarrow z=-7\)
Ta có : \(\dfrac{x}{3}=\dfrac{2x}{6}\)
\(\dfrac{y}{5}=\dfrac{3y}{15}\)
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{2x}{6}=\dfrac{3y}{15}=\dfrac{z}{7}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\)
Do đó : \(\dfrac{2x}{6}=-1\Rightarrow x=-1.6:2=-3\)
\(\dfrac{3y}{15}=-1\Rightarrow y=-1.15:3=-5\)
\(\dfrac{z}{7}=-1\Rightarrow z=-1.7=-7\)
Vậy x = -3 ; y = -5 ; z = -7
Nhớ tick mk nha !!!
Ta có: \(\dfrac{2x}{6}=\dfrac{3y}{7}\)
\(\Rightarrow\dfrac{2x}{36}=\dfrac{3y}{42}\)
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{18}=\dfrac{y}{14}=\dfrac{x+y}{18+14}=\dfrac{29}{32}\)
\(\Rightarrow\left\{{}\begin{matrix}x=16,3125\\y=12,6875\end{matrix}\right.\)
Bấm vào đây nha bạn:
Tìm các số x , y biết - Online Math