K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

\(\left(2x+5\right)\left(2x-7\right)-\left(2x-3\right)^2=36\)

\(\Leftrightarrow\left(4x^2+10x-14x-35\right)-\left(4x^2-12x+9\right)=36\)

\(\Leftrightarrow\left(4x^2-4x-35\right)-\left(4x^2-12x+9\right)=36\)

\(\Leftrightarrow4x^2-4x-35-4x^2+12x-9=36\)

\(\Leftrightarrow8x-44=36\)

\(\Leftrightarrow8x=80\)

\(\Leftrightarrow x=10\)

Vậy \(x=10\)

21 tháng 7 2019

\( a)\left( {2x + 6} \right)\left( {4{x^2} - 12x + 36} \right) - 8{x^3} + 5\\ = 8{x^3} - 24{x^2} + 72x + 24{x^2} - 72x + 216 - 8{x^3} + 5\\ = 221 \)

Vậy giá trị của biểu thức không phụ thuộc vào biến

\(b)(x-5)(2x+3)-2x(x-3)+x+7\\=2x^2+3x-10x-15-2x^2+6x+x+7\\=-8\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

21 tháng 7 2019

dề bài : cmr giá trị cá biểu thức sau ko phụ thuộc vào giá trị của biến

22 tháng 7 2019

a, \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)

= \(\left(2x+6\right)\left[\left(2x\right)^2-2x.6+6^2\right]-8x^3+5\)

= \(\left(2x\right)^3+6^3-8x^3+5\)

= \(216+5=221\)

b, \(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

= \(10x^2+3x-10x-15-2x^2+6x+x+7\)

= \(8x^2-8\)

13 tháng 6 2019

a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)

\(\Leftrightarrow14x=0\)

\(\Leftrightarrow x=0\)

Vậy pt có nghiệm duy nhất x = 0.

b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)

c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)

\(\Leftrightarrow x^2-11x=0\)

\(\Leftrightarrow x\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)

d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)

\(\Leftrightarrow41-10x=1\)

\(\Leftrightarrow-10x=40\)

\(\Leftrightarrow x=-4\)

Vậy pt có nghiệm duy nhất x = -4.

e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)

\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)

\(\Leftrightarrow8x=-13\)

\(\Leftrightarrow x=-\frac{13}{8}\)

Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)

12 tháng 9 2017

bài này bạn nhân lần lượt ra, cuối cùng hết giá trị của x, cò lại số tự nhiên. vậy là đã cm được biểu thức k phụ thuộc vào giá trị của biến rồi đó.

VD: 

\(\left(x-3\right)\left(x^2+3x+9\right)-x^3+7\)

\(=x^3+3x^2+9x-3x^2-9x-27-x^3+7\)

\(=-20\)

30 tháng 9 2017

a) x2 - 2x - 4y2 - 4y

= (x2 - 4y2) - (2x + 4y)

= (x + 2y)(x - 2y) - 2(x + 2y)

= (x + 2y)(x - 2y - 2)

= (x + 2y)[x - 2(y + 1)]

b) x4 + 2x3 - 4x - 4

= (x4 - 4) + ( 2x3 - 4x)

= (x2 - 2)(x2 + 2) + 2x(x2 - 2)

= (x2 - 2)(x2 + 2 + 2x)

c) x3 + 2x2y - x -2y

= (x3 - x) + (2x2y - 2y)

= x(x2 - 1) + 2y(x2 - 1)

= (x + 2y)(x2 - 1)

6 tháng 12 2017

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b) \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2-\left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=-6\)

6 tháng 12 2017

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b, \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x- 5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2- \left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=6\)

3 tháng 10 2019

Đúng thì TICK nka !

2x(x-5)-x(3+2x)= 26

2x^2-10x-3x-2x^2=26

-13x=26 x=-2

Vậy x=-2.

b) giống