K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

\(-2x^5-7x^4+9x^3=0\)

\(\Leftrightarrow-x^3\left(2x^2+7x-9\right)=0\)

\(\Leftrightarrow-x^3\left(2x^2-2x+9x-9\right)=0\)

\(\Leftrightarrow-x^3\left[2x\left(x-1\right)+9\left(x-1\right)\right]=0\)

\(\Leftrightarrow-x^3\left(x-1\right)\left(2x+9\right)=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc   \(x-1=0\)

hoặc   \(2x+9=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc   \(x=1\)

hoặc \(x=-\frac{9}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;1;-\frac{9}{2}\right\}\)

9 tháng 9 2017

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)

\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)

Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)

9 tháng 9 2017

Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

4 tháng 4 2018

vì x=0 không là nghiệm của pt => chia cả 2 vế cho x2≠0

2x2-7x+9-\(\dfrac{7}{x}\)+\(\dfrac{2}{x^2}\)=0

<=>\(\left(2x^2+\dfrac{2}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+9=0\)

<=>\(2\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+9=0\)

đặt \(x+\dfrac{1}{x}\)=y =>\(x^2+\dfrac{1}{x^2}=y^2-2\) ta đc

2(y2-2)-7y+9=0

<=> 2y2-4-7y+9=0

<=>2y2-7y+5=0

<=> 2y2-2y-5y+5=0

<=> (2y2-2y)-(5y-5)=0

<=> 2y(y-1)-5(y-1)=0

<=>(y-1)(2y-5)=0

<=>\(\left\{{}\begin{matrix}y-1=0\\2y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\y=\dfrac{5}{2}\end{matrix}\right.\)

Với y=1 ta có

\(x+\dfrac{1}{x}=1\) =>x2-x+1=0 (vô nghiệm)

Với y=5/2

\(x+\dfrac{1}{x}=\dfrac{5}{2}\) => x=2 và x=\(\dfrac{1}{2}\)

vậy pt có S=\(\left\{2;\dfrac{1}{2}\right\}\)

 

 

4 tháng 4 2018

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-2x^3-x^3-4x^3+2x^2+x^2+4x^2+2x^2-x-4x-2x+2=0\)

\(\Leftrightarrow\left(2x^4-2x^3+2x^2\right)-\left(x^3-x^2+x\right)-\left(4x^3-4x^2+4x\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow2x^2\left(2x^2-2x+2\right)-\dfrac{1}{2}x\left(2x^2-2x+2\right)-2x\left(2x^2-2x+2\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x^2-\dfrac{1}{2}x-2x+1\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left[x\left(x-\dfrac{1}{2}\right)-2\left(x-\dfrac{1}{2}\right)\right]=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x-\dfrac{1}{2}\right)\left(x-2\right)=0\)

Vì: \(2x^2-2x+2=\left(\sqrt{2}x-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}>0\forall x\)

Nên: \(\left[{}\begin{matrix}x-\dfrac{1}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy..................

p/s: 1 cách khác :))

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg
20 tháng 4 2017

1/

Ta có: 6x4 -x3-7x2+x+1=0

<=> 6x4-6x3+5x3-5x2-2x2+2x-x+1=0

<=> 6x3(x-1)+5x2(x-1)-2x(x-1)-(x-1)=0

<=> (x-1) ( 6x3+5x2-2x-1)=0

<=> ( x-1) ( 6x3-3x2+8x2-4x+2x-1)=0

<=> (x-1)\(\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]\)=0

<=> (x-1) ( 2x-1) ( 3x2+4x+1)=0

<=> (x-1) ( 2x-1) (3x2+3x+x+1)=0

<=> (x-1) (2x-1) \(\left[3x\left(x+1\right)+\left(x+1\right)\right]\)=0

<=> (x-1)(2x-1)(x+1)(3x+1)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\\x=-1\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(S=\left\{\pm1;\dfrac{1}{2};\dfrac{-1}{3}\right\}\)

1 tháng 1 2019

\(6x^4-x^3-7x^2+x+1=0\)

\(\Leftrightarrow6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1=0\)

\(\Leftrightarrow6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{1}{2}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

24 tháng 3 2020

-2x^5 - 7x^4 + 9x^3 = 0

<=> -x^3(2x^2 + 7x - 9) = 0

<=> -x^3(2x^2 + 9x - 2 - 9) = 0

<=> -x^3[x(2x + 9) - (2x + 9)] = 0

<=> x^3(x - 1)(2x + 9) = 0

<=> x^3 = 0 hoặc x - 1 = 0 hoặc 2x + 9 = 0

<=> x = 0 hoặc x = 1 hoặc x = -9/2

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha