\(^{^2}\) + 2(2x + 3y) +1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

21 tháng 7 2017

\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1\)

\(=\left(2x+3y+1\right)^2\)

a: \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left(x+8-x+2\right)^2=10^2=100\)

b: \(=x\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^3-16x-x^4+1\)

c: \(=2\left(2x^2-3xy+6xy-9y^2\right)-\left(4x^2-4x+1\right)+9y^2-6y+1\)

\(=4x^2+6xy-18y^2-4x^2+4x-1+9y^2-6y+1\)

\(=6xy-9y^2+4x-6y\)

a: \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left(x+8-x+2\right)^2=10^2=100\)

b: \(=x\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^3-16x-x^4+1\)

c: \(=\left(2x+6y\right)\left(2x-3y\right)-\left(2x-1\right)^2+\left(3y-1\right)^2\)

\(=4x^2-6xy+12xy-18y^2-4x^2+4x-1+9y^2-6y+1\)

\(=-9y^2+6xy+4x-6y\)

15 tháng 6 2017

a, \(2x^2+3\left(x+1\right)\left(x-1\right)-5x\left(x+1\right)\)

\(=2x^2+3\left(x^2-1\right)-5x^2-5x\)

\(=2x^2+3x^2-3-5x^2-5x\)

\(=\left(2x^2+3x^2-5x^2\right)-3-5x\)

\(=-\left(5x+3\right)\)

b, \(\left(4x+3y\right)\left(2x-5y\right)-\left(2x+6y\right)\left(3x-5y\right)\)

\(=8x^2-20xy+6xy-\left(15y^2-6x^2-10xy-18xy-30y^2\right)\)

\(=8x^2-20xy+6xy-15y^2+6x^2+10xy+18xy+30y^2\)

\(=\left(8x^2+6x^2\right)+\left(-20xy+6xy+10xy+18xy\right)+\left(-15y^2+30y^2\right)\)

\(=14x^2+14xy+15y^2\)

\(=14x.\left(x+y\right)+15y^2\)

Chúc bạn học tốt!!!

15 tháng 6 2017

a) \(2x^2+3.\left(x+1\right).\left(x-1\right)-5x\left(x+1\right)\)

= \(2x^2+3.\left(x^2-1\right)-5x.\left(x+1\right)\)

= \(2x^2+3x^2-3-5x^2-5x\)

= \(-5x-3\)

21 tháng 1 2020

\(\frac{4xy-5}{10x^3y}-\frac{6y^2-5}{10x^3y}=\frac{\left(4xy-5\right)-\left(6y^2-5\right)}{10x^3y}=\frac{4xy-6y^2}{10x^3y}=\frac{2y\left(2x-3y\right)}{2y.5x^3}=\frac{2x-3y}{5x^3}\)

\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\)
\(=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x+1\right)\left(2x-1\right)}:\frac{4x}{10x-5}\)
\(=\frac{\left(2x+1+2x-1\right)\left(2x+1-2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\times\frac{10x-5}{4x}\)
\(=\frac{4x.2}{\left(2x+1\right)\left(2x-1\right)}\times\frac{5\left(2x-1\right)}{4x}\)
\(=\frac{10}{2x+1}\)

21 tháng 1 2020

\(a,\frac{4xy-5}{10x^3y}-\frac{6y^2-5}{10x^3y}=\frac{\left(4xy-5\right)-\left(6y^2-5\right)}{10x^3y}=\frac{4xy-5-6y^2+5}{10x^3y}=\frac{4xy-6y^2}{10x^3y}\)

\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\)

\(=\left(\frac{2x+1}{2x-1}+\frac{2x-1}{2x-1}\right):\frac{4x}{10x-5}\)

\(=\frac{2x+1+2x-1}{2x-1}:\frac{4x}{10x-5}\)

\(=\frac{4x}{2x-1}.\frac{10x-5}{4x}\)

\(=\frac{10x-5}{2x-1}\)

\(=\frac{5\left(2x-1\right)}{2x-1}\)

\(=\frac{5}{1}=5\)

c: =>(2x+3y-1)^2+(2x-3y)=0

=>2x-3y=0 và 2x+3y=1

=>x=1/4; y=1/6

d: =>2y-3=0 và 2x+3y-1=0

=>y=3/2 và 2x=1-3y=1-9/2=-7/2

=>x=-7/4 và y=3/2

18 tháng 11 2016

Ta có 

\(1A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\)

\(\le5.5=25\)

\(\Rightarrow-5\le A\le5\)

Vậy GTNN là - 5 đạt được khi x = y = - 1

19 tháng 11 2016

tuong Min=5 chu

Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có

\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)

\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)

\(=\)\(\frac{5}{3}\)

6 tháng 7 2017

ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)

\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)

Vậy giá trị của biểu thức không phụ thuộc vào biến