K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

úp toi

21 tháng 10 2021

giúp mik đi mà

16 tháng 8 2015

2x3y - 2xy3 - 4xy2 -2xy

=2xy.(x2-y2-2y-1)

=2xy.[x2-(y2+2x+1)]

=2xy.[x2-(y+1)2]

=2xy.[x+(y+1)][x-(y+1)]

=2xy.(x+y+1)(x-y-1)

30 tháng 10 2021

\(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy.\left(x^2-y^2-2y-1\right)\)

\(=2xy.[x^2-\left(y^2+2y+1\right)]\)

\(=2xy.[x^2-\left(y+1\right)^2]\)

\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)

Vậy chọn đáp án A

12 tháng 1 2022

chọn A

23 tháng 9 2017

a) x3-2x2-x+2

=x(x2-1)+2(-x2+1)

=x(x2-1)-2(x2-1)

=(x2-1)(x-2)

b)

x2+6x-y2+9

=x2+6x+9-y2

=(x+3)2-y2

=(x+3-y)(x+3+y)

28 tháng 6 2016

\(2x^3y-2xy^3-4xy^2-2xy=2xy\left(x^2-y^2-2y-1\right)\)

11 tháng 12 2018

\(x^2+5x+6\)

\(=x^2+3x+2x+6\)

\(=x.\left(x+3\right)+2.\left(x+3\right)=\left(x+3\right).\left(x+2\right)\)

10 tháng 7 2023

0,2:x=1,03+3,97

 

 

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

17 tháng 9 2018

\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)

\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)

\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)

\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

lê thị mỹ vân:

a) Theo đề sửa:

$A=x^2+2y^2-2xy+4x-3y+1$

$=(x^2-2xy+y^2)+y^2+4x-3y+1$

$=(x-y)^2+4(x-y)+y^2+y+1$

$=(x-y)^2+4(x-y)+4+y^2+y+\frac{1}{4}-\frac{13}{4}$

$=(x-y+2)^2+(y+\frac{1}{2})^2-\frac{13}{4}$

$\geq \frac{-13}{4}$

Vậy GTNN của $A$ là $\frac{-13}{4}$. Giá trị này đạt được tại $x-y+2=y+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-5}{2}; y=\frac{-1}{2}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

a) Biểu thức không có min. Bạn xem lại đề.

b)

$B=2x^2+3y^2-4xy+4x+4y-2$

$=2(x^2-2xy+y^2)+y^2+4x+4y-2$

$=2(x-y)^2+4(x-y)+y^2+8y-2$

$=2[(x-y)^2+2(x-y)+1]+(y^2+8y+16)-20$
$=2(x-y+1)^2+(y+4)^2-20$

$\geq 0+0-20=-20$

Vậy $B_{\min}=-20$

Giá trị này đạt được khi $x-y+1=0$ và $y+4=0$

$\Leftrightarrow (x,y)=(-5,-4)$