Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
\(=\left(x+y\right)^2:\left(x+y\right)\)
\(=x+y\)
b) \(\left(125x^3+1\right):\left(5x+1\right)\)
\(=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)\)
\(=25x^2-5x+1\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
\(=\left(x-y\right)^2:\left(y-x\right)\)
\(=\left(y-x\right)^2:\left(y-x\right)\)
\(=y-x\)
Bạn hỏi sớm hơn nữa nhé hỏi mụn lúc này ít ai tloi lắm
a) \(A=\frac{1}{4}x^2+x-2\)
\(=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.1+1-3\)
\(=\left(\frac{1}{2}x+1\right)^2-3\)
Vì \(\left(\frac{1}{2}x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(\frac{1}{2}x+1\right)^2-3\ge0-3;\forall x\)
Hay \(A\ge-3;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\frac{1}{2}x+1\right)^2=0\)
\(\Leftrightarrow x=-2\)
Vậy MIN A=-3 \(\Leftrightarrow x=-2\)
Các câu khác cứ việc khai triển ra hằng đẳng thức mũ chẵn mà làm nhé
a) x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2( x - 1) - 4x( x - 1) + 4( x - 1)
= ( x - 1)( x- 2)2
a)\(3x\left(x^2-2x\right)\)
\(=3x^3-6x^2\)
b) \(\left(27x^3-1\right):\left(9x^2+3x+1\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right):\left(9x^2+3x+1\right)\)
\(=3x-1\)
c) \(\dfrac{4y^3}{7x^2}.\dfrac{14x^3}{y}\)
\(=8xy^2\)
\(\)d)\(\dfrac{x^2-9}{2x+6}:\dfrac{3-x}{2}\)
\(=-\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x+3\right)}:\dfrac{x-3}{2}\)
\(=-\dfrac{\left(x+3\right)\left(x-3\right)}{2\left(x+3\right)}.\dfrac{2}{\left(x-3\right)}\)
\(=-1\)
a.3x(x2-2x)=3x3-6x2
b.(27x3-1) : (9x2+3x+1)=\([\left(3x\right)^3-1]:\left(9x^2+3x+1\right)=\left(3x-1\right)\left(9x^2+3x+1\right):\left(9x^2+3x+1\right)=3x-1\)
Ta có
\(\left(x+y\right)^2=x^2+y^2+2xy\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\) (1)
\(\left(x-y\right)^2=x^2+y^2-2xy\)
\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\) (2)
Cộng (1) và (2)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2-2xy+\left(x-y\right)^2+2xy\)
\(\Rightarrow2\left(x^2+y^2\right)=\left(x+y\right)^2+\left(x-y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)=2^2+\left(\frac{3\sqrt{2}}{2}\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)=4+4,5\)
\(\Rightarrow2\left(x^2+y^2\right)=8,5\)
\(\Rightarrow x^2+y^2=4,25\)
Vây \(x^2+y^2=4,25\)
Ta có : \(\begin{cases}x+y=2\\x-y=\frac{3\sqrt{2}}{2}\end{cases}\)
Xét : \(\left(x+y\right)^2=x^2+y^2+2xy=4\left(1\right)\)
\(\left(x-y\right)^2=x^2-2xy+y^2=\frac{9}{2}\left(2\right)\)
Cộng (1) và (2) được : \(2\left(x^2+y^2\right)=4+\frac{9}{2}\Leftrightarrow x^2+y^2=\frac{17}{4}\)