Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x-3\right)\left(2x^2-3x+4\right)\)
\(=2x^3-3x^2+4x-6x^2+9x-12\)
\(=2x^3-9x^2+13x-12\)
b: \(\left(4x^2y-5xy^2+6xy\right):2xy\)
\(=\dfrac{4x^2y-5xy^2+6xy}{2xy}\)
\(=\dfrac{2xy\cdot2x-2xy\cdot2,5y+2xy\cdot3}{2xy}\)
\(=2x-2,5y+3\)
c: \(\dfrac{x}{2x+4}-\dfrac{2}{x^3+2x}\)
\(=\dfrac{x\left(x^3+2x\right)-2\left(2x+4\right)}{x\left(x^2+2\right)\cdot2\cdot\left(x+2\right)}\)
\(=\dfrac{x^4+2x^2-4x-8}{2x\left(x^2+2\right)\left(x+2\right)}\)
a: =(x-y)^2+2(x-y)
=(x-y)(x-y+2)
c: =(x-3)(x+3)+(x-3)^2
=(x-3)(x+3+x-3)
=2x(x-3)
d: =(x+3)(x^2-3x+9)-4x(x+3)
=(x+3)(x^2-7x+9)
e: =(x^2-8x+7)(x^2-8x+15)-20
=(x^2-8x)^2+22(x^2-8x)+85
=(x^2-8x+17)(x^2-8x+5)
Chắc là phân tích về hằng đẳng thức rồi cho nó lớn hơn hoặc bằng 1 số dương là ra :))) Nghĩ vậy
Hằng đẳng thức thứ nhất \(\left(x+y\right)^2\ge0\)nên nó luôn dương :v đó là cách đi của bài toán :))
\(\text{∘}\) \(\text{Ans}\)
\(\downarrow\)
\(14x^2y^3-7xy^2\cdot\left(2x-3y\right)\)
`=`\(14x^2y^3-\left[7xy^2\cdot2x+7xy^2\cdot\left(-3y\right)\right]\)
`=`\(14x^2y^3-\left(14x^2y^2-21xy^3\right)\)
`=`\(14x^2y^3-14x^2y^2+21xy^3\)
\(\text{∘}\) \(\text{Kaizuu lv uuu.}\)
a) \(\left(x-3y^2\right)^3=-27y^3+27xy^2-9x^2y+x^3\)
b) \(\left(\frac{x}{2}-y\right)^3=\frac{-8y^3+12xy^2-6x^2y-x^3}{8}\)
c) \(\left(\frac{x}{2}+\frac{x}{3}\right)^3=\frac{\left(5x\right)^3}{6^3}=\left(\frac{5x}{6}\right)^3\)
d) \(\left(\frac{2x}{3}-2y\right)^3=\frac{-216y^3+216xy^2-72x^2y+8x^3}{27}\)
\(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2=\dfrac{1}{2}x^4+x^2y^2+\dfrac{1}{2}y^4-2x^2y^2\\ =\dfrac{1}{2}x^4-x^2y^2+\dfrac{1}{2}y^4=\dfrac{1}{2}\left(x^4-2x^2y^2+y^4\right)\\ =\dfrac{1}{2}\left(x^2-y^2\right)^2\)
\(2\left(x^2+y^2\right)^2-2x^2y^2=2\left(x^4+2x^2y^2+y^4\right)-2x^2y^2\\ =2x^4+4x^2y^2+2y^4-2x^2y^2=2x^4+2x^2y^2+2y^4\\ =2\left(x^4+x^2y^2+y^4\right)\)
\(A=2x^2-2x+9-2xy+y^2\)
\(\Leftrightarrow A=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+8\)
\(\Leftrightarrow A=\left(x-1\right)^2+\left(x-y\right)^2+8\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(x-y\right)^2\ge0\forall x;y\end{cases}}\)=> \(A=\left(x-1\right)^2+\left(x-y\right)^2+8\ge8\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x-y=0\end{cases}}\Leftrightarrow x=y=1\)
Vậy MinA = 8 <=> x = y = 1
( 2x2 + y2 )3
= ( 2x2 )3 + 3.( 2x2 )2.y2 + 3.2x2.( y2 )2 + ( y2 )3
= 8x6 + 12x4y2 + 6x2y4 + y6