Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2x . 23 + 2x . 2 = 160
=> 2x (23 + 2) = 160
=> 2x = 16
=> 2x = 24
=> x = 4
Nhân phân phối là ra thôi
a)
\(VT=\left(x-1\right)\left(x+1\right)=x.x+x.1-1.x+\left(-1\right).1\)
\(=\left(x^2-1\right)+\left(x-x\right)=x^2-1+0=x^2-1=VP\Rightarrow dccm\)
c) thay vì c/m A=B ta chứng Minh B=A
\(VP=\left(x+1\right)\left(x^2-x+1\right)=\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)
\(=\left(x^3+1\right)+\left(-x^2+x^2\right)+\left(x-x\right)=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)\(=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)
Ta có: 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\) => \(\frac{a^2}{49}=\frac{b^2}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)
=> \(\hept{\begin{cases}\frac{a^2}{49}=4\\\frac{b^2}{9}=4\end{cases}}\) => \(\hept{\begin{cases}a^2=196\\b^2=36\end{cases}}\) => \(\hept{\begin{cases}a=\pm14\\b=\pm6\end{cases}}\)
Vậy ...
Ta có : \(3a=7b\)
\(\Rightarrow\frac{a}{7}=\frac{b}{3}\)
Áp dụng TC của dãy tỉ số bằng nhau ta có :
\(\frac{a}{7}=\frac{b}{3}=\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)
\(\Rightarrow\hept{\begin{cases}a=4.7=28\\b=4.3=12\end{cases}}\)
\(x^2+2xy+x+2y\)
\(=x\left(x+1\right)+2y\left(x+1\right)\)
\(=\left(x+1\right)\left(2y+x\right)\)
\(7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-5\right)\)
a)x2+2xy+x+2y
=(2xy+x2)+(2y+x)
=x(2y+x)+(2y+x)
=(x+1)(2y+x)
b)7x2-7xy-5x+5y
=(5y-7xy)+(7x2-5x)
=y(5-7x)-x(5-7x)
=(5-7x)(y-x)
c)x2-6x+9-9y2
=(x2+3xy-3x)-(3xy+9y2-9y)-(3x+9y-9)
=x(x+3y-3)-3y(x+3y-3)-3(x+3y-3)
=(x-3y-3)(x+3y-3)
d)x3-3x2+3x-1+2(x2-x)
Ta thấy x=1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x-1
=(x-1)(x2+1)
e) (x+y)(y+z)(z+x)+xyz
đề sai
f)x(y2-z2)+y(z2-x2)
=(xy2+yz2)+(x2y+xz2)
=y(xy+z2)-x(xy+z2)
=(y-x)(xy+z2)
Lời giải:
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=(x^3+x^2y-2x^2)-(xy+y^2-2y)+y+x-1\)
\(=x^2(x+y-2)-y(x+y-2)+(y+x-2)+1\)
\(=x^2.0-y.0+0+1=1\)
\(N=x^3-2x^2-xy^2+2xy+2y-2x-2\)
\(=(x^3-2x^2+x^2y)-(x^2y+xy^2-2xy)+2y+2x-4-4x+2\)
\(=x^2(x-2+y)-xy(x+y-2)+2(y+x-2)-4x+2\)
\(=x^2.0-xy.0+2.0-4x+2=2-4x\) (không tính được giá trị cụ thể, bạn thử xem lại đề)
\(P=(x^4+x^3y-2x^3)+(x^3y+x^2y^2-2x^2y)-x(x+y-2)\)
\(=x^3(x+y-2)+x^2y(x+y-2)-x(x+y-2)\)
\(=x^3.0+x^2y.0-x.0=0\)
Tìm x hả cậu?
2x+2x+2=160
=>2x(1+22)=160
=>2x.5=160
=>2x=160:5
=>2x=32
=>2x=25
=>x=5
Vậy x=5
\(2^x+2^{x+2}=160\)
\(2^x+2^x\cdot4=160\)
\(2^x\cdot\left(1+4\right)=160\)
\(2^x=160:5=32\)
\(2^x=2^5\)
\(x=5\)