Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8\) (1)
Đặt : \(A=1+2+2^2+...+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2016}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(\Rightarrow A=2^{2016}-1\)
Khi đó (1) trở thành :
\(2^x\left(2^{2016}-1\right)=2^{2019}-2^3\)
\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)\)
\(\Leftrightarrow x=3\)
Vậy : \(x=3\)
=> (1+2X-1)x (2x-1+1)/4=225
=> 2x+2x/4=225
=> 4x^2/4=225
=> x^2= 225
=> x=15
cái ^ là mũ nha bạn
chúc bn hok tốt
`Answer:`
a. Tổng: \([\left(2x-1\right)-1]:2+1=x\) số hạng
Ta có: \(1+3+5+7+9+...+\left(2x-1\right)=225\)
\(\Rightarrow x.\left(2x-1+1\right):2=225\)
\(\Leftrightarrow2x^2:2=225\)
\(\Leftrightarrow x^2=225\)
\(\Leftrightarrow x=15\)
b. Mình sửa đề nhé: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2015}=2^{2019}-8\)
\(\Rightarrow2^x.\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8\)
Ta đặt \(K=1+2+2^2+...+2^{2015}\)
\(\Rightarrow2^x.K=2^{2019}-8\)
\(\Rightarrow2K=2.\left(1+2+2^2+...+2^{2015}\right)\)
\(\Rightarrow2K=2+2^2+2^3+...+2^{2015}+2^{2016}\)
\(\Rightarrow2K-K=\left(2+2^2+2^3+...+2^{2015}+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(\Rightarrow K=2^{2016}-1\)
\(\Rightarrow2^x.\left(2^{2016}-1\right)=2^{2019}-8\)
\(\Rightarrow2^{x+2016}-2^x=2^{2019}-2^3\)
\(\Rightarrow\hept{\begin{cases}x+2016=2019\\x=3\end{cases}}\Rightarrow x=3\)
Tham khảo thêm nà
Câu hỏi của Dìm BTS - Toán lớp 6 | Học trực tuyến
#Học tốt
Ta có :
2x + 2x + 1 + 2x + 2 + ... + 2x + 2015 = 22019 - 8
⇔ 2x( 1 + 2 + 22 + ... + 22015 ) = 23( 22016 - 1 )
Cho S = 1 + 2 + 22 + ... + 22015
⇒ S = 2S - S = 2( 1 + 2 + 22 + ... + 22015 ) - ( 1 + 2 + 22 + ... + 22015 )
⇔ S = 2+22 + 23 +...+22016 - 1 - 2 - 22 - ... - 22015
⇔ S = 22016 - 1
⇒ 22016 - 1 = 1 + 2 + 22 + ... + 22015
Áp dụng đa thức vào đa thức ở đầu bài, ta có :
2x(22016 - 1) = 23(22016 - 1)
⇔ 2x(22016 - 1) - 23(22016 - 1) = 0
⇔ ( 22016 - 1 )( 2x - 23 ) = 0
Mà 22016 - 1 ≠ 0 nên 2x - 23 = 0
⇒ 2x = 23 ⇒ x = 3
Vậy để 2x + 2x + 1 + 2x + 2 + ... + 2x + 2015 = 22019 - 8 thì x = 3
Dàiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii vãi lozzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz