K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x1+x2=-5/2; x1x2=-9/2

\(N=\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\dfrac{-5}{2}-2}{-\dfrac{9}{2}+\dfrac{5}{2}+1}\)

\(=\dfrac{-9}{2}:\left(-2+1\right)=\dfrac{-9}{2}:\left(-1\right)=\dfrac{9}{2}\)

3 tháng 4 2023

\(2x^2-3x-4=0\)

\(\Delta=3^2+4.2.4=41>0\)

⇒ Phương trình có hai nghiệm phân biệt

Theo Viét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=-2\end{matrix}\right.\)

Lại có : \(A=\left(\dfrac{1}{x_1}\right)^2+\left(\dfrac{1}{x_2}\right)^2=\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}\)\(=\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=\dfrac{\left(\dfrac{3}{2}\right)^2+4}{\left(-2\right)^2}=\dfrac{25}{16}\)

Vậy....

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Đề khó đọc quá. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

3 tháng 4 2023

\(x^2-2x-\sqrt{3}+1=0\)

\(\Delta'=1^2+\sqrt{3}-1=\sqrt{3}>0\)

⇒ Phương trình có hai nghiệm phân biệt

Theo Viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=1-\sqrt{3}\end{matrix}\right.\)

Ta có : \(A=x_1^2.x_2^2-2x_1x_2-x_1-x_2\)

              \(=\left(x_1x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)

               \(=\left(1-\sqrt{3}\right)^2-2\left(1-\sqrt{3}\right)-2=4-2\sqrt{3}-2+2\sqrt{3}-2=0\)

Vậy....

 

4 tháng 6 2021

2x2-5x + 2m - 1 = 0  ( 1)

Dental = (-5)2 - 4*2*( 2m - 1)

           = 25 - 16m + 8

           = 33 - 16m

Phương trình (1) có 2 nghiệm phân biệt khi :

  33 - 16m > 0

 - 16m >-33

    m < 33/16

Theo hệ thức vi-ét ta có:

x1 + x2 = -b/a = 5/2

x1x2 = c/a =2m - 1/2

Theo bài ch0 :1/x1 + 1/x2 = 5/2

<=>2( x2 + x1   ) = 5x1x

<+> 2( 5/2 )  + 55 ( 2m - 1 ?

<+> 5 =  10m -5?2

 

<+> 

 

 

 

\(A=\dfrac{5x_1-x_2}{x_1}+\dfrac{5x_2-x_1}{x_2}\)

\(=\dfrac{5x_1\cdot x_2-x_2^2+5x_1x_2-x_1^2}{x_1x_2}\)

\(=\dfrac{10x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}{x_1x_2}\)

\(=\dfrac{10\cdot4-\left[5^2-2\cdot4\right]}{4}=\dfrac{40-25+8}{4}=\dfrac{23}{4}\)

22 tháng 4 2020

delta= \(\left(-5\right)^2-4.2.\left(-1\right)=25+8=33>0..\)

=> pt có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-et:

\(\hept{\begin{cases}x_1+x_2=-\frac{5}{2}\\x_1x_2=\frac{-1}{2}\end{cases}}\)

A= \(x_1^2-2x_1-2x_2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2-2\left(x_1+x_2\right)..\)

\(\Leftrightarrow A=\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)..\)

Thay vào A ta được: \(A=\left(-\frac{5}{2}\right)^2-2.\left(-\frac{1}{2}\right)-2.\left(-\frac{5}{2}\right).\)

                                        \(=\frac{25}{4}+1+5=\frac{49}{4}.\)

Học tốt