K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

29 tháng 6 2015

http://d.violet.vn//uploads/resources/601/2228122/preview.swf

22 tháng 7 2018

a) \(^{x^4-y^4}\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left[\left(x-y\right).\left(x+y\right)\right].\left(x^2-y^2\right)\)

\(=\left(x-y\right).\left(x+y\right).\left(x^2-y^2\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left[\left(3x-2y\right)+\left(2x-3y\right)\right].\left[\left(3x-2y\right)-\left(2x-3y\right)\right]\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

b) \(x^2-3y^2\)

\(=\left(x-3y\right)\left(x+3y\right)\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=9\left(x-y\right)^2+4\left(x-y\right)^2\)

\(=\left(x-y\right).\left(9+4\right)\)

\(=\left(x-y\right).13\)

\(=13\left(x-y\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-x.3+3^2\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(5x^2+5x.1+1^2\right)\)

\(=\left(5x-1\right)\left(5x^2+5x+1\right)\)

22 tháng 7 2018

\(a,x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)

\(b,x^2-3y^2=\left(x+\sqrt{3}y\right)\left(x-\sqrt{3}y\right)\)

cn lại tg tự nha bn

26 tháng 8 2017

a, Ta có: 4x2-2x+1 = (x2 -2x+1)+ 3x2=(x-1)+3x2>0 (thay x=1 và x=0 thì biểu thức vãn lớn hơn 0)

b, x4-3x2+9=x4- 6x+32 +3x2=(x2-3)2 +3x>0

c, x2+y2-2x-2y+2xy+2=(x+y)2 -1 -2(x+y-1) +1 =(x+y -1)(x+y+1) - 2(x+y-1)+1=(x+y-1)(x+y+1-2) + 1=(x+y-1)2 +1 >0

d, 2(x2+3xy+3y2)=2x2+6xy+6y2=(x2+2xy+y2) +(x2+4xy+4y2)+y2=(x+y)2+(x+2y)2+y2>0

e, 2x2+y2+2x(y-1)+2= (x2+2xy+y2) +(x2-2x+1)+1=(x+y)2+(x-1)+1>0

nhớ bấm đúng cho mình nhé!

a, \(x^3-2x=0\Leftrightarrow x\left(x^2-2\right)=0\Leftrightarrow x=;x=\pm\sqrt{2}\)

b, \(x^2\left(x-3\right)+12-4x=0\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=\pm2;x=3\)

c, \(\left(x-2\right)^2=x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-x^2-2x-4\right)=0\Leftrightarrow\left(x-2\right)\left(-x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+6>0\right)=0\Leftrightarrow x=2\)

d, \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=3\)

e, \(x^3-4x^2+2x-1=0\Leftrightarrow x=3,5...\)

9 tháng 12 2017

sai/sai đề thì phải