K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

2x2=3x

=>2x=3(chia 2 vế cho x)

=>x=3/2

13 tháng 4 2016

x bang 0 hoac 3/2 nha bn

1 tháng 7 2019

1) 30x-30x^2-31

2)6x^4-2x^3-15x^2+23x-6

16 tháng 6 2017

cái j sao khó nhìn vậy

11 tháng 2 2022
KHÓOOOOOOOOOO QUÁAAAAAAA ĐIIIIIIIIIIIIIIIIIIII CHẾTTTTTTTTTTTTT
30 tháng 7 2019

a) 3x(x + 2) + 4x(-2x + 3) + (2x - 3)(3x + 1)

= 3x2 + 6x - 8x2 + 12x + 6x2 + 2x - 9x - 3

= (3x2 - 8x2 + 6x2) + (6x + 12x + 2x - 9x) - 3

= x3 + 11x - 3

b) (x2 + 1)(x2 - x + 2) - (x2 - 1)(x2 + x - 2)

= x4 - x+ 3x2 - x + 2 - x4 - x3 + 3x2 + x - 2

= (x4 - x4) + (-x3 - x3) + (3x2 + 3x2) + (-x + x) + (2 - 2)

= -2x3 + 6x2

c) (-2x - 3)2 + (3x + 2)2 + (4x + 1)

= 4x2 + 12x + 9 + 9x2 + 12x + 4 + 4x + 1 

= (4x2 + 9x2) + (12x + 12x + 4x) + (9 + 4 + 1)

= 13x2 + 28x + 14

25 tháng 6 2019

a ,  x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7) 

= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7 

= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7) 

=  3 

Vậy GTBT ko phụ thuộc vào biến 

b,  (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x 

= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x 

= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5) 

= -6  

Vậy GTBT ko phụ thuộc vào biến 

a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )

= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7 

= 3

Vậy biểu thức không phụ thuộc vào biến.

b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x 

 =  2x3 -4x2 +x - 1 - 5 + x2 - 2x3  +3x2 - x

= -1 - 5 = -6

Vậy biểu thức không phụ thuộc vào biến x 

7 tháng 5 2017

Câu 1:

a, Đặt (x-1).(3x+2)=0

=>\(\left\{{}\begin{matrix}x-1=0\\3x+2=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=0+1\\3x=0-2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1\\3x=-2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1\\x=\dfrac{-2}{3}\end{matrix}\right.\)

Vậy x\(\in\){1;\(\dfrac{-2}{3}\)} là nghiệm của đa thức (x-1).(3x+2)

7 tháng 5 2017

b,Đặt 2x2-3x =0

=> x.(2x-3)=0

=>\(\left\{{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy x\(\in\){0;\(\dfrac{3}{2}\)} là nghiệm của đa thức 2x2-3x

6 tháng 4 2017

Đáp án đúng phải là

\(h\left(x\right)=2x^5+5x^4+x^3-x^2-3x+6\)

22 tháng 6 2020

b, có nghiệm là 1 và -1/3

a) Đặt \(f_{\left(x\right)}=0\)

\(\Leftrightarrow x^3+3x^2-2x-2=0\)

\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)

\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)

b) Đặt \(G_{\left(x\right)}=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=\frac{-1}{3}\)

Vậy: \(S=\left\{-\frac{1}{3}\right\}\)

c) Đặt \(A_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2-4=0\)

\(\Leftrightarrow2x^2=4\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)

d) Đặt \(h_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2+3x-5=0\)

\(\Leftrightarrow2x^2+5x-2x-5=0\)

\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)

e) Đặt P=0

\(\Leftrightarrow3x^2+4x^2+6x+3=0\)

\(\Leftrightarrow7x^2+6x+3=0\)

\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)

mà 7>0

nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)

\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)

Vậy: S=∅