\(2x^2+\2x=[x+y]y+\x+y\)

\x-2   -\3y=1-\2y+3

giải hệ pt ;\ là căn bậc hai <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

\(\left\{{}\begin{matrix}x^2=3x+2y\left(1\right)\\y^2=3y+2x\left(2\right)\end{matrix}\right.\)

Trừ theo vế 2 pt ta được :

\(x^2-y^2=3x+2y-3y-2x\)

\(\Leftrightarrow x^2-y^2=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y-1=0\end{matrix}\right.\)

TH1: \(x-y=0\Leftrightarrow x=y\)

\(\left(1\right)\Leftrightarrow x^2=3x+2x\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\end{matrix}\right.\)

TH2: \(x+y-1=0\)

\(\Leftrightarrow x=1-y\)

\(\left(1\right)\Leftrightarrow\left(1-y\right)^2=3\left(1-y\right)+2y\)

\(\Leftrightarrow y^2-y-2=0\)

\(\Leftrightarrow\left(y-2\right)\left(y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy....

4 tháng 3 2020

ĐKXĐ: \(\left\{{}\begin{matrix}2x+y\ge1\\x+2y\ge2\\x+4y\ge0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow\frac{\left(2x+y-1\right)-\left(x+2y-2\right)}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)

\(\Leftrightarrow\frac{x-y+1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)\(\Leftrightarrow\left(x-y+1\right)\left(\frac{1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+1\right)=0\)\(\Leftrightarrow x-y+1=0\)

Thế vào pt 2 => x;y

NV
4 tháng 3 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y-1}=a\ge0\\\sqrt{x+2y-2}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=x-y+1\)

Phương trình thứ nhất trở thành:

\(a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(1+a+b\right)=0\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{2x+y-1}=\sqrt{x+2y-2}\Rightarrow y=x+1\)

Thay xuống pt dưới:

\(4x^2-\left(x+1\right)^2+x+4-\sqrt{3x+1}-\sqrt{5x+4}=0\)

\(\Leftrightarrow3x^2-x+3-\sqrt{3x+1}-\sqrt{5x+4}=0\)

\(\Leftrightarrow3x^2-3x+x+1-\sqrt{3x+1}+x+2-\sqrt{5x+4}=0\)

\(\Leftrightarrow3x\left(x-1\right)+\frac{\left(x+1\right)^2-\left(3x+1\right)}{x+1+\sqrt{3x+1}}+\frac{\left(x+2\right)^2-\left(5x+4\right)}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow3x\left(x-1\right)+\frac{x\left(x-1\right)}{x+1+\sqrt{3x+1}}+\frac{x\left(x-1\right)}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow x\left(x-1\right)\left(3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right)=0\)

16 tháng 11 2017

Từ (1) ta có:

x2 - 2x = a2(y - 1)

Thế vào (2) ta được

y2 = 2y + a2[a2(y - 1)]

Giải phương trình này tìm được y có y suy ra x.

5 tháng 12 2017

\(\left\{{}\begin{matrix}x^2y^2=2x^2+y\\xy^2+2x^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2-y=2x^2\\xy^2-1=-2x^2\end{matrix}\right.\)

☘ Cộng vế theo vế

\(\Rightarrow x^2y^2-1+xy^2-y=0\)

\(\Leftrightarrow\left(xy-1\right)\left(xy+1\right)+y\left(xy-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left(xy+1+y\right)=0\)

☘ Trường hợp 1: xy = 1 \(\Leftrightarrow x=\dfrac{1}{y}\)

☘ Trường hợp 2: \(xy+1+y=0\) \(\Leftrightarrow x=-\dfrac{1+y}{y}\)

⚠ Thay vào 1 trong 2 phương trình đề bài cho rồi làm tiếp nhé.