
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


dài v nhg thui cố làm v
a)\(\sqrt{4x^2}-20x+25+2x=5\)
=> \(2x-18x+20=0\)
=> \(-16x+20=0\)
=> \(-4x+5=0\)
=> \(-4x=-5\)
=> \(x=\dfrac{5}{4}\)
vậy........................................................
d) \(\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1-1}\)
cau này đề sai
ok baby

a) \(\sqrt{x^2+2x+1}=9\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}=9\)
\(\Leftrightarrow\left|\sqrt{x}+1\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=9\\x+1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-10\end{matrix}\right.\)
b)\(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
c)\(\sqrt{x^2-2x\sqrt{2}+2}=5\)
\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=5\)
\(\Leftrightarrow\left|x-\sqrt{2}\right|=5\)
\(\left[{}\begin{matrix}x-\sqrt{2}=5\\x-\sqrt{2}=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5+\sqrt{2}\\x=-5+\sqrt{2}\end{matrix}\right.\)
Mình giải tới đây thôi
Đk: \(x\ge-\frac{1}{4}\)
Pt \(\Leftrightarrow2\left(2x^2+2x\right)=2\sqrt{4x+1}-2\)
\(\Leftrightarrow4x^2+4x+1=2\sqrt{4x+1}-1\)
Đặt \(4x+1=t\left(t\ge0\right)\)
Phương trình trở thành: \(4\left(\frac{t-1}{4}\right)^2+t=2\sqrt{t}-1\)
Lại có: \(VP=2\sqrt{t}-1\le\left(t+1\right)-1=t\) (theo cô si)
\(VT=4\left(\frac{t-1}{4}\right)^2+t\ge t\)
Dấu "=" xảy ra \(\Leftrightarrow t=1\)
Suy ra \(x=\frac{t-1}{4}=\frac{1-1}{4}=0\)
Vậy x = 0