K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2020

\(2x^2+x-3=2x^2+3x-2x+3=\left(x-1\right)\left(2x+3\right)\)

\(3x^2+7x-6=3x^2+9x-2x-6=\left(x+3\right)\left(3x-2\right)\)

\(6x^2-14x-3\) ( đề sai ko )?  \(2x^2-14x+4\)( đề sai ko )?  

\(2x^2-3x-20=2x^2+5x-8x-20=\left(2x+5\right)\left(x-4\right)\)

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

12 tháng 12 2016

a.(x- x2 -7x + 3 ) : x -3 = x+ 2x - 1

b.( 2x- 3x2 - 3x3 - 2 + 6x ) : ( x- 2 ) = 2x- 3x + 1

Nhớ k cho mik nha bạn!

12 tháng 12 2016

bạn giải cụ thể y mk k cho

30 tháng 3 2020

a) x^4 - 3x^3 + 3x - 1 = 0

<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0

<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0

<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

25 tháng 12 2016

Các bạn ơi giải giúp mình với, mình đang cần gấp

a) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)

b) Ta có: \(-x^2+5x-6=0\)

\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)

\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

c) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

⇔(4x2-10x)-(2x-5)=0

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

d) Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)

e) Ta có: \(x^3+2x^2-x-2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;1;-1\right\}\)

g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)

\(\Leftrightarrow-24x-8=0\)

\(\Leftrightarrow-8\left(3x+1\right)=0\)

⇔3x+1=0

\(\Leftrightarrow3x=-1\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

22 tháng 1 2020

h) \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy S = {2; 1; \(\frac{1}{2}\)}

i) \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)

Vậy S = {1;-2}

27 tháng 7 2017

1, x^2 +5x+4x+20

= x(x+4)+5(x+4)

= (x+5).(x+4)

2,x^2 -x -20

= x^2 -5x+4x-20

= x(x-5)+4(x-5)

=(x+4).(x-5)

3,3x^2 +3x -2x -2 

= 3x(x+1)-2(x+1)

= (3x-2)(x+1)

4, 2x^2-4x-x-2

=2x(x-2)-x-2

=(2x-1)(x+2)

5,6x^2-2x+9x-3

=2x(3x-1)+3(3x-1)

=(2x+3)(3x-1)

6,3x^2 +2x+9x+6

=3x(x+3)+2(x+3)

=(3x+2)(x+3)

7,= 2(x^2-10x+3)

8,=x^4 +4^3

mk làm luôn ko chép đề nha bn 

27 tháng 7 2017

Cảm ơn bạn kb nha

27 tháng 6 2017

1) \(\left(3x-5\right)^2+\left(2x+1\right)^2=\left(5x-6\right)\left(2x+3\right)+3x^2\)

\(\Leftrightarrow\) \(9x^2-30x+25+4x^2+4x+1=10x^2+15x-12x-18+3x^2\)

\(\Leftrightarrow\) \(13x^2-26x+26=13x^2+3x-18\)

\(\Leftrightarrow\) \(-29x+44\) \(\Leftrightarrow\) \(-29x=-44\Leftrightarrow\) \(x=\dfrac{44}{29}\) vậy \(x=\dfrac{44}{29}\)

2) \(\left(7x-4\right)\left(5x+3\right)=\left(6x-5\right)^2-x^2+1\)

\(\Leftrightarrow\) \(35x^2+21x-20x-12=36x^2-60x+25-x^2+1\)

\(\Leftrightarrow\) \(35x^2+x-12=35x^2-60x+26\)

\(\Leftrightarrow\) \(61x-38=0\) \(\Leftrightarrow\) \(61x=38\) \(\Leftrightarrow x=\dfrac{38}{61}\) vậy \(x=\dfrac{38}{61}\)

27 tháng 6 2017

1. \(\left(3x-5\right)^2+\left(2x+1\right)^2=\left(5x-6\right)\left(2x+3\right)+3x^2\)

\(\Leftrightarrow9x^2-30x+25+4x^2+4x+1=10x^2+15x-12x-18+3x^2\)

\(\Leftrightarrow-29x=-44\)

\(\Rightarrow x=\dfrac{44}{29}\)

2. \(\left(7x-4\right)\left(5x+3\right)=\left(6x-5\right)^2-x^2+1\)

\(\Leftrightarrow35x^2+21x-20x-12=36x^2-60x+25-x^2+1\)

\(\Leftrightarrow61x=38\)

\(\Rightarrow x=\dfrac{38}{61}\)