\(^2\)-x-1)\(^2\)+(x\(^2\)-3x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

X=1

Dung thi ung ho mk nha

25 tháng 10 2019

c) Bài này nghiệm đẹp nên cứ yên tâm bình phương:) Còn em lâu rồi ko đi khủng bố tinh thần người đọc:P

ĐK: \(x\ge-\frac{1}{16}\)

PT \(\Leftrightarrow x^2-x-2+\frac{2\sqrt{1+16x}}{9}\left(\sqrt{1+16x}-9\right)-\frac{2\left(1+16x\right)}{9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}\right)+\frac{2\sqrt{1+16x}}{9}\left(\frac{16\left(x-5\right)}{\sqrt{1+16x}+9}\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}+\frac{32\sqrt{1+16x}}{9\left(\sqrt{1+16x}+9\right)}\right)=0\)

Cái ngoặc to luôn dương.

Do đó x = 5

P/s: Em đánh máy lỗi chỗ nào thì nhắn hộ em:D

25 tháng 10 2019

a)ĐK:...

Đặt \(\sqrt{x+5}=a;\sqrt{3-x}=b\ge0\Rightarrow a^2+b^2=8\)

Theo đề bài ta có hệ \(\left\{{}\begin{matrix}a+b-2\left(ab+1\right)=0\\a^2+b^2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-2ab-2=0\\\left(a+b\right)^2-2ab-8=0\end{matrix}\right.\)

Lấy pt dưới trừ pt trên thu được \(\left(a+b\right)^2-\left(a+b\right)-6=0\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\left(L\right)\end{matrix}\right.\)

Thay a + b = 3 vào pt đầu ta suy ra \(ab=\frac{1}{2}\)

Theo hệ thức Viet đảo: a, b là hai nghiệm của pt:\(t^2-3t+\frac{1}{2}=0\)

\(\Leftrightarrow t\in\left\{\frac{3+\sqrt{7}}{2};\frac{3-\sqrt{7}}{2}\right\}\).Đến đây xét 2 th:

TH1: \(\left\{{}\begin{matrix}a=\frac{3+\sqrt{7}}{2}\\b=\frac{3-\sqrt{7}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\frac{3-\sqrt{7}}{2}\\b=\frac{3+\sqrt{7}}{2}\end{matrix}\right.\) nữa là xong! (em nghĩ vậy thôi chứ ko chắc ở đoạn dùng hệ thức Viet đảo đâu!)

21 tháng 8 2019

\(\Leftrightarrow x^2-1+1-\sqrt{2x^2-3x+2}-\frac{3}{2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)+\frac{\left(2x-1\right)\left(x-1\right)}{1+\sqrt{2x^2-3x+2}}-\frac{3}{2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-\frac{1}{2}+\frac{2\left(x-\frac{1}{2}\right)}{1+\sqrt{2x^2-3x+2}}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-\frac{1}{2}\right)\left(1+\frac{2}{1+\sqrt{2x^2-3x+2}}\right)=0\)

Do \(\left(1+\frac{2}{1+\sqrt{2x^2-3x+2}}\right)>0\left(\forall x\right)\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow2x^2-9x+9-3+\sqrt{9x-2x^2}=0\)

\(\Leftrightarrow2x\left(x-3\right)-3\left(x-3\right)+\frac{\left(x-3\right)\left(-2x+3\right)}{\sqrt{9x-2x^2}+3}=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x-3-\frac{2x-3}{\sqrt{9x-2x^2}+3}\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x-3\right)\left(1-\frac{1}{\sqrt{9x-2x^2}+3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{3}{2}\end{cases}}\)

TH còn lại loại bạn tự giải nha

21 tháng 8 2019

a) đK:\(2x^2-3x+2\ge0\)

 \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)

<=> \(2x^2+6-2\sqrt{2x^2-3x+2}=3\left(x+1\right)\)

<=> \(2x^2-3x+3-2\sqrt{2x^2-3x+2}=0\)

Đặt: \(t=\sqrt{2x^2-3x+2}\left(t\ge0\right)\)

Ta có phương trình:

\(t^2-2+3-2t=0\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

Với t=1 ta có phương trình:

 \(\sqrt{2x^2-3x+2}=1\Leftrightarrow2x^2-3x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{1}{2}\left(tm\right)\end{cases}}\)

Vậy:...

Câu b tương tự.

6 tháng 8 2019

a) \(\sqrt{2}.x^2=\sqrt{98}\Rightarrow x^2=7\Rightarrow x=\sqrt{7}\)

d)\(3\sqrt{x}-5-18=0\Rightarrow3\sqrt{x}=23\)

\(\sqrt{x}=\frac{23}{3}\Rightarrow x=\left(\frac{23}{3}\right)^2\)

a: \(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x+1}-2\right)=0\)

=>2x-1=0 hoặc 2x+1=4

=>2x=1 hoặc 2x=3

=>x=3/2 hoặc x=1/2

b: \(\Leftrightarrow3x+2=2\left(x+2\right)\)

=>3x+2=2x+4

=>x=2(nhận)

24 tháng 8 2019

a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)

Đặt \(2x^2+3x=a\left(a\ge-9\right)\)

=> \(5\sqrt{a+9}=a+3\)

<=> \(25\left(a+9\right)=a^2+6a+9\)

<=> \(25a+225=a^2+6a+9\)

<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)

<=> 0= \(a^2-27a+8a-216\)

<=> \(\left(a-27\right)\left(a+8\right)=0\)

=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)

b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)

<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)

<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)

<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)

<=> \(x^3\left(8-x^2\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có nghiệm x=0

24 tháng 8 2019

d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))

<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)

Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)

\(a-a^2+6=0\)

<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)

<=> \(\left(a-3\right)\left(a+2\right)=0\)

=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))

<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)

<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)

Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)