K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Ta có:

VT=3(x+y-z)^2+2x^2+2y^2+2z^2-2yz-2zx

    = 3(x+y-z)^2+(x-z)^2+(y-z)^2_x^2+y^2

Suy ra: VT>=0.

Dấu = xay ra khi x=y=z=0

1 tháng 5 2016

=0 tự làm nhé 

20 tháng 10 2017

= x2+2x+1+y2+6y+9

= (x+1)2+(y+3)2

Vì (x+1)>=0 với mọi x

(y+3)2>=0 với mọi y

Do đó (x+1)2+(y+3)2>= với mọi x,y

Vậy....

20 tháng 10 2017

(x^2+2x+1)+(y^2+6y+9)

(x+1)^2+(y+3)^2 > hoặc = 0

tk mk nha

22 tháng 10 2018

a) (x2 + xy) - (5x + 5y) = x(x + y) - 5(x + y)

= (x + y)(x - 5)

b) (2x - x +2 )(2x + x - 2) = (x + 2)(x - 2)

d) 2x2 + 2x - 7x - 7 = (2x2 + 2x) - (7x + 7)

= 2x(x + 1) - 7(x + 1) = (x + 1)(2x - 7)

22 tháng 10 2018

c) 3(16x2y2 - y2 + 2xy - x2)

= 3\(\left[16x^2y^2-\left(y^2-2xy+x^2\right)\right]\)

= 3\(\left[16x^2y^2-\left(y-x\right)^2\right]\)

= 3(4xy - y + x)(4xy + y - x)

a: \(VT=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\forall x,y\)

c: \(VT=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

24 tháng 5 2018

c.

C=6(xy)^2-6(xy)y^2-(2x)^3+8(xy)^2+5(xy)^2-5(xy).y^2

C=(6+8+5)(xy)^2-(6+5)(xy)^2.y^2 -(2x)^3+8.(xy)^2

x.y=1; 2x=1

C=19-11.4-1+8

C=26-44=30-40-4-4=-10-8=-18

24 tháng 5 2018

a)

<=>A=3x[10x^2-2x+1-2(5x^2-x-2)]=3x(1+4)

=3.5.x

x=15

A=3.5.15=15^2=(4^2-1).15=4.15.4-15=60.4-15

=240-15=225