![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4-3x^3-2x^2+6x+4=0\)
\(\Leftrightarrow x^4-2x^3-2x^2-x^3+2x^2+2x-2x^2+4x+4=0\)
\(\Leftrightarrow x^2\left(x^2-2x-2\right)-x\left(x^2-2x-2\right)-2\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=1+\sqrt{3}\\x=1-\sqrt{3}\end{matrix}\right.\)
Điều kiện xác định : \(x\ge-2\)
\(2x^2-6x+4=3\sqrt{x^3+8}\)
\(\Leftrightarrow2\left(x^2-3x+2\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(u=\sqrt{x+2}\) , \(t=\sqrt{x^2-2x+4}\) (u,t\(\ge0\))
Ta có : \(t^2-u^2=x^2-2x+4-x-2=x^2-3x+2\)
=> pt đã cho tương đương với : \(3ut=2\left(t^2-u^2\right)\)
\(\Leftrightarrow2t^2+ut-2u^2-4ut=0\Leftrightarrow t\left(2t+u\right)-2u\left(2t+u\right)=0\)
\(\Leftrightarrow\left(2t+u\right)\left(t-2u\right)=0\) \(\Leftrightarrow t-2u=0\) (Vì 2t+u > 0)
\(\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{array}\right.\) (tmdk)