Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
a)
Đặt \(A=9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x+1+1\)
\(=\left(3x+1\right)^2+1\)
Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)
Hay \(A\ge1>0;\forall x\)
Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức
\(a,9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x.1+1^2+1\)
\(=\left(3x-1\right)^2+1\)
Vì\(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)
\(\Rightarrow9x^2-6x+2>0\forall x\)
\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
\(\Rightarrow x^2+x+1>0\forall x\)
\(\text{a) }3x+6=8x+3\)
\(\Leftrightarrow3x-8x=3-6\)
\(\Leftrightarrow-5x=-3\)
\(\Leftrightarrow x=\frac{-3}{-5}=\frac{3}{5}\)
\(\text{Câu b và câu c bạn ghi rõ lại giùm}\)
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
1. P = \(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) ĐKXĐ: \(x\ne-3\), \(x\ne2\)
= \(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
= \(\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{x-2}\)
= \(\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
= \(\frac{x-4}{x-2}\)
2. P=\(\frac{-3}{4}\)
<=> \(\frac{x-4}{x-2}=\frac{-3}{4}\)
<=> 4 ( x - 4 ) = -3 ( x - 2 )
<=> 4x - 16 = -3x + 6
<=> 7x = 2
<=> x = \(\frac{22}{7}\)
3. \(x^2-9=0\)
<=> ( x -3 ) ( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
-> P = \(\frac{3-4}{3-2}\) = -1
a) x(4x2 - 1) = 0
=> x(2x-1)(2x+1)=0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.......\)
b) \(3\left(x-1\right)^2-3x\left(x-5\right)-2=0\)
\(\Rightarrow3x^2-6x+3-3x^2+13=0\\ \Rightarrow13-6x=0\\ \Rightarrow x=\dfrac{13}{6}\)
\(d.2x^2-5x-7=0\\ \Rightarrow2x^2+2x-\left(7x+7\right)=0\\ \Rightarrow2x\left(x+1\right)-7\left(x+1\right)=0\\ \Rightarrow\left(2x-7\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\Rightarrow x=\dfrac{7}{2}\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
Từ (1); (2) và (3) ta được:
\(ax+by+by+cz+cz+ax=5a+5b+5c\)
\(\Leftrightarrow2\left(ax+by+cz\right)=5\left(a+b+c\right)\)
\(\Rightarrow a+b+c=\dfrac{2\left(ax+by+cz\right)}{5}\)
Ta có:
\(ax+by=5a\)
\(\Leftrightarrow ax+by+cz=5c+cz\)
\(\Leftrightarrow ax+by+cz=c\left(z+5\right)\)
\(\Rightarrow\dfrac{1}{z+5}=\dfrac{c}{ax+by+cz}\) (3)
Tượng tự ta có:
\(\dfrac{1}{x+5}=\dfrac{a}{ax+by+cz}\) (4)
\(\dfrac{1}{y+5}=\dfrac{b}{ax+by+cz}\)(5)
Từ (3);(4)và (5) \(\Rightarrow\dfrac{1}{x+5}+\dfrac{1}{y+5}+\dfrac{1}{z+5}=\dfrac{a+b+c}{ax+by+cz}\)
\(=\dfrac{\dfrac{2\left(ax+by+cz\right)}{5}}{ax+by+cz}=\dfrac{2}{5}\)
Vậy:....
\(x^2-9x+1=0\Rightarrow x=9x-1\)
Ta có:
\(V=\dfrac{x^4+x^2+1}{5x^2}\)
\(=\dfrac{\left(x^2\right)^2+x^2+1}{5x^2}\)
\(=\dfrac{\left(9x-1\right)^2+9x-1+1}{5\left(9x-1\right)}=\dfrac{81x^2-18x+1+9x-1+1}{5\left(9x-1\right)}=\dfrac{81\left(9x-1\right)-9x+1}{5\left(9x-1\right)}=\dfrac{729x-81-9x+1}{5\left(9x-1\right)}\)\(=\dfrac{720x-80}{5\left(9x-1\right)}=\dfrac{80\left(9x-1\right)}{5\left(9x-1\right)}=16\)
Thực ra 2 câu đầu rất dễ nha bạn ^^!
1) x4 + 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0
<=> (x3+x)(x+2) + 1=0
1>0
=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0
<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)
b)
x3+1=\(2\sqrt[3]{2x-1}\)
<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)
<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)
<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0
<=> x=1
Giúp mình với ngày mai mình thi rồi!
Errr bạn viết lại đề bằng kí hiệu toán học được không?