Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, (2x+1)3 - (2x+1)(4x2-2x+1) - 3(2x-1)2 = 15
⇔ \(8x^3+12x^2+6x+1-8x^3-1-3\left(4x^2-4x+1\right)=15\)
⇔ \(12^2+6x-12x^2+12x-3=15\)
⇔ \(18x=18\)
⇔ x = 1
2, x(x-4)(x+4) - (x-5)(x2 +5x+25) = 13
⇔ \(x\left(x^2-16\right)-x^3+125=13\)
⇔ \(x^3-16x-x^3=-\text{112}\)
⇔ \(16x=112\)
⇔ x = 7
a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x^2+x+1}\)
b) \(\dfrac{9}{x^3-9x}-\dfrac{-1}{x+3}\)
\(=\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\)
c) \(\dfrac{x^3-8}{5x+10}.\dfrac{x^2+4x}{x^2+2x+4}\)
\(=\dfrac{x\left(x-2\right)\left(x^2+2x+4\right)\left(x+4\right)}{5\left(x+2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{x\left(x-2\right)\left(x+4\right)}{5\left(x+2\right)}\)
d) \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}.\dfrac{2\left(2-x\right)}{x+2}\)
\(=-\dfrac{10\left(x+2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{5}{2}\)
e) \(\dfrac{\left(x-13\right)^2}{2x^5}.\dfrac{-3x^2}{x-13}\)
\(=\dfrac{x-13}{2x^3}.\dfrac{-3}{1}\)
\(=\dfrac{-3\left(x-13\right)}{2x^3}\)
g) \(\dfrac{x^2+6x+9}{1-x}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2}{x-1}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2\left(x-1\right)^2}{2\left(x-1\right)\left(x+3\right)^2}\)
\(=-\dfrac{x-1}{2}\).
1,4x2.(5x3+2x-1)
=4x2.5x3+4x2.2x-4x2.1
20x5+8x3-4x2
2,4x3y2:x2
=4xy2
3,(15x2y3-10x3y3+6xy):5xy
15x2y3:5xy-10x3y3:5xy+6xy:5xy
3xy2-2x2y2+\(\dfrac{6}{5}\)
1: \(=20x^5+8x^3-4x^2\)
2: \(=4xy^2\)
3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)
4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)
6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)
7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)
8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=4x^2-2x+\dfrac{1}{4}\)
10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)
\(=\dfrac{x^2-7}{2\left(x-1\right)}\)
12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)
15:=x^3-y^3+2
1: \(=20x^5+8x^3-4x^2\)
2: \(=4xy^2\)
3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)
4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)
6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)
7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)
8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=4x^2-2x+\dfrac{1}{4}\)
10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)
\(=\dfrac{x^2-7}{2\left(x-1\right)}\)
12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)
15:=x^3-y^3+2
a. 3.(x-2)+2.(x-3)=13
x=5
b. (x+1).(2-x)-(3x+5).(x+2)=-4x2+1
x=-9/10
c.x.(5-2x)+2x.(x-1)=13
x=13/3
d. (2x+3)2-(x-1)2=0
x=-2/3
e. x2.(3x-2)-8+12=0
x vô ngiệm
f x2+x=0
x=-1
g. x3-5x=0
x=0
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
a) \(3\left(x-2\right)+2\left(x-3\right)=1\)\(3\)
\(3x-6+2x-6=13\)
\(5x=13+6+6\)
\(5x=25\)
\(x=25\)
c) \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
d) \(\left(2x+3\right)^2-\left(x-1\right)^2=0\)
\(\left(2x+3-x+1\right)\left(2x+3+x-1\right)=0\)
\(\left(x+4\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x+4=0\\3x+2=0\end{cases}}=>\orbr{\begin{cases}x=-4\\x=\frac{-2}{3}\end{cases}}\)
f) \(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
g) \(x^3-5x=0\)
\(x^2\left(x-5\right)=0\)
\(=>\orbr{\begin{cases}x^2=0\\x-5=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=5\end{cases}}\) \(\)
\(\)
\(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-13\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+13\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1=0\\3x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-\dfrac{1}{2}\left(VN\right)\\x=-\dfrac{10}{3}\end{matrix}\right.\)
\(S=\left\{-\dfrac{10}{3}\right\}\)