Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.2x.3y =22x.3x
2.3y = 2x.3x
2 = 2x => x=1
3y = 3x =31 => y =1
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
Dễ thấy với các sô mũ m chăn tích \(x^m.y^m=1\)
Với số mũ n lẻ thì tích \(x^n.y^n=1-1\)
\(=>A=\left(-1+1\right)+\left(-1+1\right)+.....+\left(-1+1\right)+\left(-1\right)\)
=> A= - 1
!)
=> x(x - 1)=0
=> \(\left[\begin{array}{nghiempt}x=1\\x-1=0\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
Vậy đa thức có nghiệm là x=0 ; x=1
1) \(x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
c)\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)
d)\(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x-4=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{4}{3}\end{array}\right.\)
g(x) = x14 - 13x13 + 13x12 - 13x11 + ... + 13x2 - 13x + 15
= x14 - (12 + 1)x13 + (12 + 1)x12 - (12 + 1)x11 + ... + (12 + 1)x2 - (12 + 1)x + 15
Tại x = 12 thì ta có:
g(12) = x14 - (x + 1)x13 + (x + 1)x12 - (x + 1)x11 + ... + (x + 1)x2 - (x + 1)x + 15
= x14 - x14 - x13 + x13 + x12 - x12 - x11 + ... + x3 + x2 - x2 - x + 15
= -x + 15
Thay x = 12, ta có:
g(12) = -12 + 15 = 3
Vậy g(12) = 3
Sửa đề: \(C=\left(x^2y^3+x^3y^2-x^2-y^2+5\right)-\left(x^2y^3+x^3y^2+2y^2-1\right)\)
\(C=x^2y^3+x^3y^2-x^2-y^2+5-x^2y^3-x^3y^2-2y^2+1\)
\(=-3y^2-x^2+6\le6\)
Dấu '=' xảy ra khi x=y=0
đề sai kìa