Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+1 + 3x.5 = 216
<=> 3x.3 + 3x.5 = 216
<=> 3x( 3 + 5 ) = 216
<=> 3x.8 = 216
<=> 3x = 27
<=> 3x = 33
<=> x = 3
Ta có: \(3^{x+1}+3^x\cdot5=216\)
\(\Leftrightarrow3^{x-3}\cdot\left(3^4+3^3\cdot5\right)=216\)
\(\Leftrightarrow3^{x-3}\cdot216=216\)
\(\Leftrightarrow3^{x-3}=1\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
\(x^3=216\)
\(x^3=6^3\)
\(\Rightarrow x=6\)
\(x^2=2^3+3^2+4^2\)
\(x^2=8+9+16\)
\(x^2=33\)
\(x=\sqrt{33}\)
\(x^3=x^2\)
\(x^3-x^2=0\)
\(x\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
a) x3 = 216
=> x3 = 63
=> x = 6
Vậy x = 6
b) x2 = 23 + 32 + 42
=> x2 = 8 + 9+ 16
=> x2 =33
=> \(x\in\varnothing\)( vì x thuộc N)
Vậy ...
mk chỉ bn bn chỉ cần tính trong ngoặc ra bao nhiêu thì viết mũ rồi đổi tính bình thường nha
a: \(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-2}=\dfrac{1}{216}\)
\(\Leftrightarrow x\in\varnothing\)
b: \(\Leftrightarrow\left[\left(\dfrac{1}{6}\right)^{\left(x-5\right)\left(x-1\right)}\right]=\dfrac{1}{36}\)
=>(x-5)(x-1)=2
=>x2-6x+5-2=0
=>x2-6x+4=0
hay \(x\in\left\{3+\sqrt{5};3-\sqrt{5}\right\}\)
\(3^x+5\times3^{x-1}=256\)
\(\Rightarrow3^x+5\times3^x\div3=256\)
\(\Rightarrow3^x+5\times3^x\times\frac{1}{3}=256\)
\(\Rightarrow3^x\times\left(1+5+\frac{1}{3}\right)=256\)
\(\Rightarrow3^x\times\frac{19}{3}=256\)
Đến đây mk chịu, đề bài sai hay sao bạn ạ.
~Study well~
#JDW
Thèo đề bài, ta có:
\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
x ; y ; z thì bạn tự tìm nhé , chắc cái này không khó đâu nhỉ ??
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\) \(=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{4}=\frac{1}{4}\Rightarrow y=1\)
\(\frac{z}{6}=\frac{1}{4}\Rightarrow z=\frac{3}{2}\)
\(\frac{x+2}{x}=\frac{1}{2}\)
\(\Rightarrow2.\left(x+2\right)=x\)
\(\Rightarrow2x+4=x\)
\(\Rightarrow2x-x=-4\)
\(\Rightarrow x=-4\)
\(b,\frac{x+3}{x+4}=\frac{3}{5}\)
\(\Rightarrow5.\left(x+3\right)=3.\left(x+4\right)\)
\(\Rightarrow5x+15=3x+12\)
\(\Rightarrow5x-3x=12-15\)
\(\Rightarrow2x=-3\)
\(\Rightarrow x=-\frac{3}{2}\)
\(\frac{x+5}{6}=\frac{6}{x+5}\)
\(\Rightarrow\left(x+5\right).\left(x+5\right)=6.6\)
\(\Rightarrow\left(x+5\right)^2=6^2\)
\(\Rightarrow\orbr{\begin{cases}x+5=6\\x+5=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\)
Vậy x = 1 hoặc x= - 11
\(\frac{x+1}{3}=\frac{12}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=3.12\)
\(\Rightarrow\left(x+1\right)^2=36\)
\(\Rightarrow\left(x+1\right)^2=6^2\)
\(\Rightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}\)
c) \(\dfrac{x+1}{35}+\dfrac{x+2}{34}+\dfrac{x+3}{33}=\dfrac{x+4}{32}+\dfrac{x+5}{31}+\dfrac{x+6}{30}\)
\(\Rightarrow\dfrac{x+1}{35}+1+\dfrac{x+2}{34}+1+\dfrac{x+3}{33}+1=\dfrac{x+4}{32}+1+\dfrac{x+5}{31}+1+\dfrac{x+6}{30}+1\)
\(\Rightarrow\dfrac{x+1+35}{35}+\dfrac{x+2+34}{34}+\dfrac{x+3+33}{33}=\dfrac{x+4+32}{32}+\dfrac{x+5+31}{31}+\dfrac{x+6+30}{30}\)
\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}=\dfrac{x+36}{32}+\dfrac{x+36}{31}+\dfrac{x+36}{30}\)
\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}-\dfrac{x+36}{32}-\dfrac{x+36}{31}-\dfrac{x+36}{30}=0\)
\(\Rightarrow\left(x+36\right)\left(\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\right)=0\)
\(\Rightarrow x+36=0\left(\text{vì }\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\ne0\right)\)
\(\Rightarrow x=-36\)
Vậy ...
a/ Ta có: \(-4\dfrac{3}{5}.2\dfrac{4}{3}\le x\le-2\dfrac{3}{5}:1\dfrac{6}{15}\)
\(\Rightarrow\dfrac{-23}{5}.\dfrac{10}{3}\le x\le\dfrac{-13}{5}:\dfrac{21}{15}\)
\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{5}.\dfrac{15}{21}\)
\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{7}\)
\(\Rightarrow-15,\left(3\right)\le x\le-1,\left(857142\right)\)
Vì x \(\in\) Z nên x \(\in\left\{-1;-2;-3;...;-15\right\}\)
Chúc bạn học tốt!!!
\(2^{x+1}.3^x-6^x=216\)
\(\Leftrightarrow2^x2.3^x-2^x.3^x=216\)
\(\Leftrightarrow\left(2.3\right)^x\left(2-1\right)=216\)
\(\Leftrightarrow6^x=216\)
\(\Leftrightarrow6^x=6^3\)
\(\Leftrightarrow x=3\)
\(2^{x+1}.3^x-6^x=216\)
\(=>2^x.2.3^x-6^x=216\)
\(=>\left(2.3\right)^x.2-6^x=216\)
\(=>6^x.2-6^x=216\)
\(=>6^x.\left(2-1\right)=216\)
\(=>6^x.1=216\)
\(=>6^x=216:1=216\)
\(=>6^x=6^3\)
\(=>x=3\)
Vậy...
\(#NqHahh\)