Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi vế trái là A ta có 2 x A = 2 X + 2 + 2X + 3 + 2X + 4 + ..........+ 2X + 99 + 2X + 100
lấy 2A - A = A => A = ( 2 x + 2 + 2 x + 3 + 2 x + 4 + ..................+ 2 x + 99 + 2 x + 100 ) - ( 2 x + 1 + 2x + 2 + 2x + 3+ ...... + 2x + 99 )
A = 2x + 100 - 2 x + 1 = 2x ( 2100 - 2 ) ( 1 )
ta có vế phải : 2104 - 32 = 2 4 + 100 - 24 + 1 = 24 ( 2100 - 2 ) ( 2 )
từ ( 1 ) và ( 2 ) => x = 4
a) \(2^{x-1}+2^{x+1}+2^{x+2}=104\)
=> \(2^{x-1}+2^x\cdot2+2^x\cdot2^2=104\)
=> \(2^x:2+2^x\cdot\left(2+2^2\right)=104\)
=> \(2^x\cdot\frac{1}{2}+2^x\cdot6=104\)
=> \(2^x\cdot\left(\frac{1}{2}+6\right)=104\Rightarrow2^x=104:\left(\frac{1}{2}+6\right)=104:\frac{13}{2}=16\)
=> \(x=4\)
2.
\(\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot15\cdot37\right)\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot5\cdot3\cdot37\right)\\=\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-\left(13\cdot5\right)\cdot\left(3\cdot37\right)\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-65\cdot111\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot0\\ =0\)
D = 21 + 22 + 23 + ...+ 299 + 2100
2D = 22 + 23 + 24 + ... + 2100 + 2101
2D-D = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 21 + 22 + 23 + ...+ 299 + 2100)
D = 2101 - 2
C= 1x2 + 3x4 + ...+ 99x100
C = (1+3+...+99) x ( 2 + 4 +...+100)
C = B x A
Số các số hạng của B là :
( 99-1): 2 + 1 = 50 ( số )
Tổng của B là :
( 99 + 1) x 50 : 2= 2500
Số các số hạng của A là :
( 100-2) : 2 + 1 = 50 ( số hạng )
Tổng của A là :
( 100 + 2 ) x 50 : 2 = 2550
Ta có : C = B x A
= 2500 x 2550
= 6375000
Vậy .......
2x(1+2+22 +....+2100) = 2104 -23
A=1+2+22 +...+2100 =>2A -A =A =2101 -1
=>2x(2101-1)= =23(2101-1)
=> x =3
b) \(3.2^{x+1}=12\)
\(2^{x+1}=12:3\)
\(2^{x+1}=4\)
\(2^{x+1}=2^2\)
\(x+1=2\)
\(x=2-1\)
\(x=1\)
Vậy \(x=1\)
c) \(2^{x-1}=2^3+2^4-2^3\)
\(2^{x-1}=8+16-8\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
Vậy \(x=5\)
d) \(x^{50}=x\)
\(x^{50}-x=0\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
\(b.3.2^{x+1}=12\\ \Rightarrow2^{x+1}=4\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x=1\\ \)
c) \(2^{x-1}=2^3-2^3+2^4\\ \Rightarrow2^{x-1}=0+16\\ \Rightarrow2^{x-1}=16\\ \Rightarrow2^{x-1}=2^4\\ \Rightarrow x-1=4\\ \Rightarrow x=5\)
d) \(x^{50}=x\\ \Rightarrow x=0;1\)
e) \(2\left(2x-1\right)^4=32\\ \Rightarrow\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\frac{3}{2}\)
g) Bí
2x+1+2x+2+2x+3+...+2x+99=2104-32
2x.2+2x.22+2x.23+...+2x.299=2104-32
2x.(2+22+23+...+299)=2104-25
Đặt A = 2+22+23+...+299
2A=22+23+24+...+2100
2A-A=2100-2
A=2100-2
=> 2x.(2100-2)=2104-25
2x=(2104-25):(2100-2)
2x=24:24
2x=1
=>x=0
Vậy x=o