![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
em của chị ui bài này chị ko biết nàm hì hì , chị nhớ là bài này làm j phải nâng cao đâu , chắc là em đang chán ra cho zui zậy thôi , em chị hok giỏi lắm mà ^-^"
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
\(3x^2+10x-8=5x^2-2x+10\)
\(3x^2-5x^2+10x+2x-8-10=0\)
\(-2x^2+12x-18=0\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(\frac{x^2-x-6}{x-3}=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thực ra 2 câu đầu rất dễ nha bạn ^^!
1) x4 + 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0
<=> (x3+x)(x+2) + 1=0
1>0
=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0
<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)
b)
x3+1=\(2\sqrt[3]{2x-1}\)
<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)
<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)
<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0
<=> x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow\left(x^2+5x\right)-\left(2x+10\right)=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b.
\(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}\\x=1\end{matrix}\right.\)
bài 2:
ĐKXĐ: x khác -1
\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)
\(\Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}=\dfrac{2x+3}{x+1}\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow0x=-1\)
\(\Leftrightarrow x\in\varnothing\)
Suy ra pt vô nghiệm
b.
ĐKXĐ: x khác \(\dfrac{3}{2}\)
\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
\(\Leftrightarrow\dfrac{x^2+4x+4}{2x-3}-\dfrac{2x-3}{2x-3}=\dfrac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\) ( loại)
\(\Leftrightarrow4x^2+4x+1-\left(4x^2-9\right)=10\)
\(\Leftrightarrow4x=0\Rightarrow x=0\)