![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
=>(2x-7)^2017[(2x-7)^2-1]=0
=>(2x-7)(2x-8)(2x-6)=0
hay \(x\in\left\{3;3.5;4\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(7^{2x}+7^{2x+2}=2450\)
\(\Leftrightarrow7^{2x}+2^{2x}.7^2=2450\)
\(\Leftrightarrow7^{2x}\left(1+49\right)=2450\)
\(\Leftrightarrow7^{2x}.50=2450\)
\(\Leftrightarrow7^{2x}=79\)
\(\Leftrightarrow7^{2x}=7^2\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ....
b/ Ta có :
\(A=1+2+2^2+.......+2^{2016}\)
\(\Leftrightarrow2A=2+2^2+......+2^{2017}\)
\(\Leftrightarrow2A-A=\left(2+2^2+.......+2^{2017}\right)-\left(1+2+....+2^{2016}\right)\)
\(\Leftrightarrow A=2^{2017}-1\)
Mà \(B=2^{2017}-1\)
\(\Leftrightarrow A=B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : 72x + 72x + 2 = 2450
=> 72x(1 + 72) = 2450
=> 72x . 50 = 2450
=> 72x = 49
\(\Leftrightarrow\orbr{\begin{cases}7^{2x}=7^2\\7^{2x}=\left(-7\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có A < \(\frac{2}{3^2-1^2}+\frac{2}{5^2-1^2}+...+\frac{2}{2019^2-1^2}\)
Tới đây ở mẫu số ta có công thức :
a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
<=> \(A< \frac{2}{\left(3-1\right)\left(3+1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+....+\frac{2}{\left(2019-1\right)\left(2019+1\right)}\)
\(=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\)
\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}< \frac{2019}{2020}=B\)
=> A < B
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 2017-|x-2017| = x
=> |x - 2017| = 2017 - x
Th1: x \(\ge\)2017
=> x - 2017 = 2017 - x
=> x + x = 2017 + 2017
=> x = 2017 (thỏa mãn)
Th2: x < 2017
=> x - 2017 = -2017 + x
=> x - x = -2017 + 2017
=> 0 = 0
Vậy x = 2017
b, Vì \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\\\left(3y-7\right)^{2020}\ge0\\\left|x+y+z\right|\ge0\end{cases}\forall x,y,z}\)
\(\Rightarrow\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|=0\)
Do đó \(\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y-7\right)^{2020}=0\\\left|x+y+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y-7=0\\x+y+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{3}\\z=\frac{-29}{6}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2017-|x-2017|=x
\(\Rightarrow\) 2017-x=|x-2017|
\(\Rightarrow\)2017-x=2017-x
\(\Rightarrow x\in\left\{2017;-2017\right\}\)
Mình chỉ làm được câu a, câu b bạn tự làm nha
x = 4
\(\Leftrightarrow\left(2x-7\right)^{2017}\left[\left(2x-7\right)^2-1\right]=0\)
=>(2x-7)(2x-6)(2x-8)=0
hay \(x\in\left\{3;\dfrac{7}{2};4\right\}\)