Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^3:\left|x-2\right|=2\)
\(\Leftrightarrow8:\left|x-2\right|=2\)
\(\Leftrightarrow\left|x-2\right|=8:2\)
\(\Leftrightarrow\left|x-2\right|=4\)
Xét trường hợp 1: \(x-2=4\)
\(\Rightarrow x=4+2\)
\(\Rightarrow x=6\)
Xét trường hợp 2: \(x-2=-4\)
\(\Rightarrow x=-4+2\)
\(\Rightarrow x=-\left(4-2\right)\)
\(\Rightarrow x=-2\)
Vậy \(x=6\) hoặc \(x=-2\)
b)
\(a,\frac{-3}{2}-2x+\frac{3}{4}=-1\)
\(\frac{-3}{2}-2x=-1-\frac{3}{4}\)
\(\frac{-3}{2}-2x=\frac{-7}{4}\)
\(2x=\frac{-7}{4}+\frac{-3}{2}\)
\(2x=\frac{-13}{4}\)
\(x=\frac{-13}{4}:2\)
\(x=\frac{-13}{4}.\frac{1}{2}\)
\(x=\frac{-13}{8}\)
a)\(P\left(x\right)=4x^3-2x+2+x^2-4x^3+2x^3+5+x\)
\(P\left(x\right)=\left(4x^3-4x^3+2x^3\right)+\left(-2x+x\right)+\left(2+5\right)+x^2\)
\(P\left(x\right)=2x^3-x+7+x^2\)
*Sắp xếp: \(P\left(x\right)=2x^3+x^2-x+7\)
\(Q\left(x\right)=5x^3-x^2+3x-5x^3+3+4x^2+2x-2\)
\(Q\left(x\right)=\left(5x^3-5x^3\right)+\left(-x^2+4x^2\right)+\left(3x+2x\right)+\left(3-2\right)\)
\(Q\left(x\right)=2x^2+5x+1\)
*Sắp xếp:\(Q\left(x\right)=2x^2+5x+1\)
b) Ta có: \(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3+x^2-x+7-2x^2-5x-1\)
\(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3+\left(x^2-2x^2\right)+\left(-x-5x\right)+\left(7-1\right)\)
\(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3-x^2-6x+6\)
xin lỗi nhé , lúc nãy mik bận nên ko giúp được
mik thấy có bạn Trịnh Công Mạnh Đồng trả lời rồi đó
Bạn ấy làm đúng rồi
^^
a: =>2x-1=4 hoặc 2x-1=-4
=>2x=5 hoặc 2x=-3
=>x=5/2 hoặc x=-3/2
d: =>x=|2|=2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x-y=0\end{matrix}\right.\Rightarrow x=y=1\)
\(A=2x^2+x-5y+4\)
Thay x = 1/2 ; y = -1/52 vào biểu thức trên ta được :
\(=2.\frac{1}{4}+\frac{1}{2}-5.\frac{-1}{52}+4=1+\frac{5}{52}+4\)
\(=5+\frac{5}{52}=\frac{260}{52}+\frac{5}{52}=\frac{265}{52}\)
\(B=2x^2-3y^2+4z^3\)
Thay x = 2 ; y = z = -23 vào biểu thức trên ta được :
\(=2.4-3.169+4.2197=8-507+8788=8289\)
tương tự với c, bài này ko khó, tại số to nên tính có khi nhầm lẫn vài chỗ thôi.
\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{4}=\dfrac{z}{5}\) và \(x+y-z=10\)
Ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{8};\dfrac{x}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{12}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}\) và \(x+y-z=10\)
AD tính chất DTS bằng nhau ta có:
\(\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{12+8-15}=\dfrac{10}{5}=2\)
+) \(\dfrac{y}{8}=2\Rightarrow y=16\)
+) \(\dfrac{x}{12}=2\Rightarrow x=42\)
+) \(\dfrac{z}{15}=2\Rightarrow z=30\)
Vậy \(x=42;y=16;z=30\)
c,\(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\) và \(2x+3y-4z=34\)
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
Ta lại có:
\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\) và \(2x+3y-4z=34\)
AD tính chất DTS bằng nhau ta có:
\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)
+) \(\dfrac{2x}{12}=2\Rightarrow x=12\)
+) \(\dfrac{3y}{45}=2\Rightarrow y=30\)
+) \(\dfrac{4z}{40}=2\Rightarrow z=20\)
Vậy \(x=12;y=30;z=20\)
\(\)