Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3x=4y và 3y=5z
a, tính P= \(\dfrac{2x+3y+z}{x-y+z}\)
=> \(\dfrac{x}{4}=\dfrac{y}{3}\) và \(\dfrac{y}{5}=\dfrac{z}{3}\)
hay \(\dfrac{x}{20}=\dfrac{y}{15}\) và \(\dfrac{y}{15}=\dfrac{z}{9}\)
=> \(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}\)
= \(\dfrac{2x+3y+z}{2.20-3.15+z}\)= \(\dfrac{2x+3y+z}{40-45+z}\)
Đặt \(\frac{2x}{3}=\frac{3y}{5}=\frac{5z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3k}{2}\\y=\frac{5k}{3}\\z=\frac{6k}{5}\end{cases}}\)
\(\Rightarrow3x-4y+3z=\frac{3.3k}{2}-\frac{4.5k}{3}+\frac{3.6k}{5}=-59\)
\(\Rightarrow\frac{9k}{2}-\frac{20k}{3}+\frac{18k}{5}=-59\)
\(\Rightarrow k.\left(\frac{9}{2}-\frac{20}{3}+\frac{18}{5}\right)=-59\)
\(\Rightarrow k.\frac{43}{30}=-59\)
=> k = -1770/43
Số lớn khiếp , còn lại tự nhân lên rồi tìm x,y,z nha
<img class="irc_mi iAxkr7uWhlxs-pQOPx8XEepE" alt="Kết quả hình ảnh cho tỉ lệ thức" style="margin-top: 64px;" src="http://sgk.vnedu.vn/dataimages/201506/original/images1129577_1_7_baitaptoanlop7tap1_chuong1_bai7_tilethuc_1.jpg" onload="google.aft&&google.aft(this)" width="304" height="265">
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
Theo đề bài, ta có:
\(3x=4y;3y=4z\) hay \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\) và 2x+3y-5z=55
\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}=\frac{2x+3y-2z}{2.9+3.12-2.16}=\frac{55}{22}=\frac{5}{2}\)
- \(\frac{x}{9}=\frac{5}{2}.9=\frac{45}{2}\)
- \(\frac{y}{12}=\frac{5}{2}.12=30\)
- \(\frac{z}{16}=\frac{5}{2}.16=40\)
Vậy \(x=\frac{45}{2},y=30,z=40\)
\(2x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{3}.\dfrac{1}{5}=\dfrac{y}{2}.\dfrac{1}{5}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}\left(1\right)\)
\(3y=5z\)
\(\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{5}.\dfrac{1}{2}=\dfrac{z}{3}.\dfrac{1}{2}\Rightarrow\dfrac{y}{10}=\dfrac{z}{6}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Vì \(\left|x-2y\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)
* \(TH1:x-2y=5\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{2y}{20}=\dfrac{x-2y}{15-20}=\dfrac{5}{-5}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=-1\\\dfrac{y}{10}=-1\\\dfrac{z}{6}=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-1.15=-15\\y=-1.10=-10\\z=-1.6=-6\end{matrix}\right.\)
\(TH2:\left|x-2y\right|=-5\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{2y}{20}=\dfrac{x-2y}{15-20}=\dfrac{-5}{-5}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=1\\\dfrac{y}{10}=1\\\dfrac{z}{6}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.15=15\\y=1.10=10\\z=1.6=6\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.;\left\{{}\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)
ai cover với
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{2x+3y-3z}{2\cdot15+3\cdot10-3\cdot8}=\dfrac{96}{36}=\dfrac{8}{3}\)
Do đó: \(\left\{{}\begin{matrix}x=24\\y=\dfrac{80}{3}\\z=\dfrac{64}{3}\end{matrix}\right.\)