\(-2x-3\sqrt{x}+2\)

Tim GTLN

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

Điều kiện: \(x\ge0\)

Với \(x\ge0\Rightarrow\hept{\begin{cases}-2x\le0\\-3\sqrt{x}\le0\end{cases}\Rightarrow-2x-3\sqrt{x}+2\le2}\)

Dấu "=" xảy ra khi x = 0

Vậy GTLN của biểu thức trên là 2 khi x = 0

24 tháng 8 2019

 ĐKXĐ: \(x\ge0\)

\(-2x-3\sqrt{x}+2\)

\(=-2\left(x+\frac{3}{2}\sqrt{x}-1\right)\)

\(=-2\left(\sqrt{x}+\frac{3}{4}\right)^2+\frac{25}{8}\le\frac{25}{8}\forall x\ge0\)

Để bt đạt GTLN => \(-2\left(\sqrt{x}+\frac{3}{4}\right)^2\) lớn nhất

\(\Rightarrow\sqrt{x}+\frac{3}{4}\) nhỏ nhất

\(\Rightarrow x=0\) \(\Rightarrow\) GTLN của bt = \(2\)

24 tháng 8 2019

GTLN là gì vậy bạn, bạn giải thích hộ tớ được không?

24 tháng 8 2019

GTLN= Giá trị lớn nhất đó bn!

25 tháng 6 2017

\(F=1-\sqrt{x^2-2x+2}=1-\sqrt{\left(x-1\right)^2+1}\)(   Điều kiện: \(x\in R\))

Ta có \(\left(x-1\right)^2\ge0, \forall x \Leftrightarrow\left(x-1\right)^2+1\ge1, \forall x \Leftrightarrow\sqrt{\left(x-1\right)^2+1} \ge1, \forall x\)

\(\Leftrightarrow-\sqrt{\left(x-1\right)^2+1}\le-1, \forall x \Leftrightarrow1-\sqrt{\left(x-1\right)^2+1}\le0, \forall x\Leftrightarrow F\le0, \forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)( thỏa điều kiện )

Vậy GTLN của F là 0 tại x = 1

25 tháng 6 2017

dệ không

8 tháng 1 2018

a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :

Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).

8 tháng 1 2018

Sao ko hiện làm lại :

\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8 

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))