Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(2x\cdot\left(2x-3\right)=\left(3-2x\right)\cdot\left(2-5x\right)\\ \Leftrightarrow-2x\cdot\left(3-2x\right)-\left(3-2x\right)\cdot\left(2-5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(-2x-2+5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-2x=0\\3x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
c)
\(2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^3+6x^2-x^2-3x=0\\ \Leftrightarrow x\cdot\left(2x^2+6x-x-3\right)=0\\ \Leftrightarrow x\cdot\left(-3+6x-x+2x^2\right)=0\\ \Leftrightarrow x\cdot\left[-3\cdot\left(1-2x\right)-x\cdot\left(1-2x\right)\right]=0\\ \Leftrightarrow x\cdot\left(-3-x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\-3-x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
d)
\(x^2-5x+6=0\\ \Leftrightarrow x^2-3x-2x+6=0\\ \Leftrightarrow6-2x-3x+x^2=0\\ \Leftrightarrow2\cdot\left(3-x\right)-x\cdot\left(3-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
e)
\(\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5+x+2\right)\cdot\left(2x+5-x-2\right)=0\\ \Leftrightarrow\left(3x+7\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+7=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{7}{3}\\x=-3\end{matrix}\right.\)
a) \(\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\)
➜\(\left(x+3\right)\left(x+5+1+3x-4\right)=0\)
➜\(\left[{}\begin{matrix}x+3=0\\x+3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Mk đang hok zoom sorry nha!!!
Ok mình sẽ giúp bạn!!
(2x2+1)3 + (2-5x)3 = (2x2-5x+3)3
<=> (2x2+1)3 +(2-5x)3 - (2x2-5x+3)3 =0
<=> (2x2+1)3+(2-5x)3+(-2x2+5x-3)3 =0 ( Chỉ có mũ lẽ thì mới đổi dấu được nhé ) (5)
Đặt a=2x2+1 ; b=2-5x ; c=-2x2+5x-3 (4)
=> a+b+c=2x2+1+2-5x-2x2+5x-3=0 => a+b=-c ; b+c=-a ; a+c=-b (2)
Ta có
a+b+c =0
<=>(a+b+c)3=0
<=> (a+b)3 +3(a+b)2 +3(a+b)c2+c3=0
<=>a3+b3+3ab(a+b) +3(a+b)2c+3(a+b)c2+c3=0
<=>a3+b3+c3 +3(a+b)[ab+(a+b)c +c2]=0
<=>a3+b3+c3 + 3(a+b)(ab+ac+bc+c2) =0
<=>a3+b3+c3 +3(a+b)[a(b+c)+c(b+c)]=0
<=>a3+b3+c3 +3(a+b)(b+c)(a+c) =0 (1)
Thay (2) vào (1) ta có:
a3+b3+c3+ 3(-c)(-a)(-b) =0
<=> a3+b3+c3-3abc=0
<=> a3+b3+c3=3abc (3)
Thay(4) vào (3) => (2x2+1)3+(2-5x)3+(-2x2+5x-3)3 = 3(2x2+1)(2-5x)(-2x2+5x-3) (6)
Từ (5)và(6) ta có
3(2x2+1)(2-5x)(-2x2+5x-3)=0
<=> (2x2+1)(2-5x)(-2x2+2x+3x-3)=0
<=>(2x2+1)(2-5x)[-2x(x-1)+3(x-1)]=0
<=>(2x2+1)(2-5x)(3-2x)(x-1)=0
Mà 2x2+1 >0 với mọi x thuộc R
=> 2-5x=0 <=> x=2/5
hoặc 3-2x=0 <=> x=3/2
hoặc x-1=0 <=> x=1
Vậy .....
mk nhé!!
Bạn ơi!! Bạn xem lại đề bài xem ở kia là (2x2-1)3 hay là (2x2+1)3
a) \(6x^2-x-1\)
\(=6x^2-3x+2x-1\)
\(=3x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\)
5x(2xn-1-yn)-2xn-2(5x2-y3)+xy3(5yn-3-2xn-3)
=10xn-5xyn-10xn+2xn-2y3+5xyn-2xn-2y3
=(10xn-10xn)+(-5xyn+5xyn)+(2n-2y3-2xn-2y)
=0
a) \(\left(x-3\right)\left(2x+1\right)\left(4-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy ..................
b) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy .................
c) \(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy .......................
d) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[x\left(x-3\right)-4\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy ...................
a,\(\left(x-3\right)\left(2x+1\right)\left(4-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\\4-5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...
b,\(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\\x=1\end{matrix}\right.\)
Vậy...
c,Sửa đề:
\(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-3+2x+1\right)\left(x-3-2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\-x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-4\end{matrix}\right.\)
Vậy...
d,\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+4=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-4\\x=3\end{matrix}\right.\)
Vậy...
Bài làm
( 2x - 3 )² = ( 3 - 2x )( 2 - 5x )
<=> ( 3 - 2x ) ² - ( 3 - 2x)( 2 - 5x ) = 0
<=> ( 3 - 2x )( 3 - 2x - 2 + 5x ) = 0
<=> ( 3 - 2x )( 1 + 3x ) = 0
<=> 3 - 2x = 0 hoặc 1 + 3x = 0
<=> x = 3/2 hoặc x = -1/3
Vậy nghiệm phương trình S={ 3/2; -1/3}
(=)3-2x=2-5x
-3x=1
x=-1/3