Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x - 1)6 = (2x - 1)8
(2x - 1)6 = (2x - 1)6 . (2x - 1)2
=> (2x - 1)2 = 1
=> \(\hept{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Rightarrow TH1:\) \(2x-1=1\Rightarrow2x=2\Rightarrow x=1\)
\(TH2:\) \(2x-1=-1\Rightarrow2x=0\Rightarrow x=0\)
\(TH3:\) \(2x-1=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy: \(x=1\) hoặc \(x=0\) hoặc \(x=\frac{1}{2}\)
(2x-1)6 = (2x-1)8
=> 2x-1 \(\in\){-1; 0; 1}
=> 2x \(\in\){0; 1; 2}
=> x \(\in\){0; 1/2; 1}
a)Ta có: (2x - 1)6 = (2x - 1 )8
=> (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) = (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1)
=> 2x - 1 = 0; 1
+ Nếu 2x - 1 = 0
=> 2x = 1
=> x = 1/2
+ Nếu 2x - 1 = 1
=> 2x = 2
=> x = 1
a) (2x + 1)3 = (2x + 1)2011
=> (2x + 1)2011 - (2x + 1)3 = 0
=> (2x + 1)3.[(2x + 1)2008 - 1] = 0
\(\Rightarrow\orbr{\begin{cases}\left(2x+1\right)^3=0\\\left(2x+1\right)^{2008}-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(2x+1\right)^{2008}=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x=-1\\2x+1\in\left\{1;-1\right\}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\2x\in\left\{0;-2\right\}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x\in\left\{0;-2\right\}\end{cases}}\)
Vậy ...
b) \(\left(x-\frac{1}{3}\right)^3=64=4^3\)
\(\Rightarrow x-\frac{1}{3}=4\)
\(\Rightarrow x=4+\frac{1}{3}=\frac{13}{3}\)
Vậy ...
(2x - 1)6 = (2x - 1)8
=> (2x - 1)8 - (2x - 1)6 = 0
=> (2x - 1)6 . [(2x - 1)2 - 1] = 0
\(\Rightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\\left(2x-1\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}}\)
• Nếu 2x - 1 = 0 \(\Rightarrow x=\frac{1}{2}\)
• Nếu (2x - 1)2 = 1 \(\Rightarrow\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy, \(x\in\left\{0;\frac{1}{2};1\right\}\)
\(1=\left(2x-1\right)^2\)
\(1=4x^2-4x+1\)
\(4x\left(x-1\right)=0\)
\(\orbr{\begin{cases}x-1=0\\4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
học tốt nha
1, -x3+3x2-3x+1
=1-3x.12+3.1.x2-x3
=(1-3x)3
bài này là hằng đẳng thức số 5: (a-b)3=a3-3a2b+3ab2-b2
3, ta có:
x3+8y3=x3+(2y)3=(x+2y)(x2-2xy+4y2
đây là hằng đẳng thức số 6
Vì \(\left(2x-1\right)^6;\left(2x-1\right)^8\ge0,\forall x\)
\(\Rightarrow\left(2x-1\right)^6=\left(2x-1\right)^8\Leftrightarrow\left(2x-1\right)=0\Leftrightarrow x=\frac{1}{2}\)
mink ko bit
\(\left(2x-1\right)^6=\left(2x-1\right)^8\Leftrightarrow\left(2x-1\right)^6=\left(2x-1\right)^6.\left(2x-1\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\\left(2x-1\right)^2=1\end{cases}}\)
Suy ra:
\(2x-1=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Hoặc \(2x-1=1\Rightarrow2x=2\Rightarrow x=1\)
Hoặc \(2x-1=-1\Rightarrow2x=0\Rightarrow x=0\)
Vậy có 3 giá trị x thỏa mãn là 0;1/2;1