
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 :
A = 1 + 2 + 22 + ... + 211
A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )
A = 3 + 22(1+2) + ... + 210(1+2)
A = 1.3 + 22.3 + ... + 210.3
A = 3.(1+22+...+210) chia hết cho 3
Bài 2 :
2.52 + 3:710 - 54:33
= 2.25 + 3:1 - 54:27
= 50 + 3 - 2
= 49
Bài 3 :
a) ( 2x - 6 ) . 47 = 49
2x - 6 = 42 = 16
2x = 16
=> x = 8
b) ( 27x + 6 ) : 3 - 11 = 9
( 27x + 6 ) : 3 = 20
27x + 6 = 60
27x = 54
=> x = 2
c) 740 : ( x + 10 ) = 102 - 2.13
740 : ( x + 10 ) = 74
x + 10 = 10
=> x = 0
d) ( 15 - 6x ) . 35 = 36
15 - 6x = 3
6x = 12
=> x = 2
Bài 4 :
Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11
Bài 1 :
A = 1 + 2 + 22 + ... + 211
A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )
A = 3 + 22(1+2) + ... + 210(1+2)
A = 1.3 + 22.3 + ... + 210.3A = 3.(1+22+...+210) chia hết cho 3
Bài 2 :
2.52 + 3:710 - 54:33
= 2.25 + 3:1 - 54:27
= 50 + 3 - 2= 49
Bài 3 :
a) ( 2x - 6 ) . 47 = 49
2x - 6 = 42 = 16
2x = 16
=> x = 8
b) ( 27x + 6 ) : 3 - 11 = 9
( 27x + 6 ) : 3 = 20
27x + 6 = 60
27x = 54
=> x = 2
c) 740 : ( x + 10 ) = 102 - 2.13
740 : ( x + 10 ) = 74
x + 10 = 10
=> x = 0
d) ( 15 - 6x ) . 35 = 36
15 - 6x = 3
6x = 12
=> x = 2
Bài 4 :
Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11

a) x(16 - y2) = 497 => x = 497 : (16 - y2)
Vì x \(\in\) N nên 16- y2 > 0 và là ước của 497
+) 16 - y2 > 0 => y2 < 16 ; y là số tự nhiên nên y2 = 0;1; 4 hoặc 9 => 16 - y2 = 16; 15; 12; 7
Mà 497 chia hết cho 16 - y2 nên 16 - y2 = 7 => x = 497 : 7 = 71; y = 3
Vậy...
b) x + 1 luôn chia hết cho x+ 1 => x(x+1) = x2 + x chia hết cho x+1
Để x2 + 2x + 6 chia hết cho x+1 thì (x2 + 2x + 6) - (x2 + x) chia hết cho x+1
=> x + 6 chia hết cho x+1
Hay (x+1) + 5 chia hết cho x+1 => 5 chia hết cho x+1 =.> x+ 1 = 1 hoặc 5
+) x+1 = 1 => x = 0
+) x +1 = 5 => x = 4
Vậy....

a) (2n+1) chia hết (6-n)
=>(2n+1)+(12-2n) chia hết cho (6-n)
=>13 chia hết (6-n)
=> 6-n thuộc ước của 13={ 1;-1;13;-13}
Nếu 6-n=1=>n=5
Nếu 6-n=-1=>n=7
Nếu 6-n=13=> n=-7 (loại)
Nếu 6-n=-13=>n=19
Vậy n=5;n=7;n=19
N

a, x + 16 ⋮ x+1
⇒x + 1+15 ⋮ x+1
⇒15 ⋮ x+1
⇒x+1 ∈{-1;1;-3;3;5;-5;15;-15}
⇒x ∈ {-2;0;-4;2;4;-6;14;-16}
Vay x ∈ {-2;0;-4;2;4;-6;14;-16}

\(5x-16=40+x\)
\(\Leftrightarrow5x=40+x+16\)
\(\Leftrightarrow5x=x+56\)
\(\Leftrightarrow5x-x=56\)
\(\Leftrightarrow4x=56\)
\(\Leftrightarrow x=14\)
Vậy \(x=14\)
\(5x-7=-21-2x\)
\(\Leftrightarrow5x-7+21=-2x\)
\(\Leftrightarrow5x+14=-2x\)
\(\Leftrightarrow-2x-5x=14\)
\(\Leftrightarrow-7x=14\)
\(\Leftrightarrow x=-2\)
Vậy \(x=-2\)

\(a,234-\left(x-56\right)=789\)
\(\Leftrightarrow x-56=234-789\)
\(\Leftrightarrow x-56=-555\)
\(\Leftrightarrow x=\left(-555\right)+56=-499\)
Vậy x = -499
b) \(\frac{x+3}{-5}=\frac{x-15}{4}\)
\(\Leftrightarrow4\left(x+3\right)=-5\left(x-15\right)\)
\(\Leftrightarrow4x+12=-5x+75\)
\(\Leftrightarrow4x+12-\left(-5x\right)=75\)
\(\Leftrightarrow4x-\left(-5x\right)+12=75\)
\(\Leftrightarrow4x+5x=63\)
\(\Leftrightarrow9x=63\)
\(\Leftrightarrow x=7\)
Vậy x = 7
c) \(8\left(x-1\right)-7=2\left(x+2\right)+5\)
\(\Leftrightarrow8x-8-7=2x+4+5\)
\(\Leftrightarrow8x-8-7-2x+4=5\)
\(\Leftrightarrow8x-2x-8-7+4=5\)
\(\Leftrightarrow8x-2x=5-4+7+8\)
\(\Leftrightarrow4x=16\)
\(\Leftrightarrow x=4\)
Vậy x = 4
d) Đặt \(D=\frac{2x+3}{x-1}=\frac{2x-2+5}{x-1}=\frac{2\left(x-1\right)+5}{x-1}=2+\frac{5}{x-1}\)
=> \(5⋮x-1\)
=> \(x-1\inƯ\left(5\right)\)
=> \(x-1\in\left\{\pm1;\pm5\right\}\)
=> \(x\in\left\{2;0;6;-4\right\}\)

a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
`2x+1` $\vdots$ `6-x` `(x` `\ne` `6)`
`=>2x+1` $\vdots$ `-(x-6)`
`=>2x+1` $\vdots$ `x-6`
`=>2x-12+12+1` $\vdots$ `x-6`
`=>2(x-6)+13` $\vdots$ `x-6`
Vì `x-6` $\vdots$ `x-6`
`=>2(x-6)` $\vdots$ `x-6`
Để `2(x-6)+13` $\vdots$ `x-6`
`=>13` $\vdots$ `x-6`
`=>x-6∈Ư(13)={1;13;-1;-13}`
Ta có bảng sau:
\begin{array}{|c|c|}\hline \text{x-6}&\text{1}&\text{13}&\text{-1}&\text{-13}\\\hline \text{x}&\text{7}&\text{19}&\text{5}&\text{-7}\\\hline\end{array}
Vậy `x∈{7;19;5;-7}`