K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

Đặt f(x) = 3x3 + x2 + x - m + 3

f(x) có nhân tử là ( x - 1 ) <=> x = 1 là nghiệm của f(x)

<=> f(1) = 0

=> 3.13 + 12 + 1 - m + 3 = 0

=> 3 + 1 + 1 + 3 - m = 0

=> 8 - m = 0

=> m = 8

Vậy với m = 8 thì f(x) = ( 3x3 + x2 + x - m + 3 ) có một nhân tử là ( x - 1 )

7 tháng 11 2020

m sẽ bằng 8

14 tháng 10 2020

\(x^3+9x^2+26x+24=\left(x^2+7x+12\right)\left(x+2\right)=\left(x+3\right)\left(x+4\right)\left(x+2\right)\)

14 tháng 10 2020

Ta có: \(x^3+9x^2+26x+24\)

\(=\left(x^3+2x^2\right)+\left(7x^2+14x\right)+\left(12x+24\right)\)

\(=x^2\left(x+2\right)+7x\left(x+2\right)+12\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+7x+12\right)\)

\(=\left(x+2\right)\left[\left(x^2+3x\right)+\left(4x+12\right)\right]\)

\(=\left(x+2\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)

\(=\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

10 tháng 9 2016

(3x3-2x2=5):(x2-1) bằng 3x-2 và dư 3(x+1)

23 tháng 6 2017

a)(2x2+1)(3x3-2x2+3

= 6x5-4x4+6x2+3x3-2x2+3

= 6x5-4x4+3x3+4x2+3

b)(-3x+1)(4x4-x³+x)

= -12x5+3x4-3x2+4x4-x³+x

= -12x5+7x4-x3-3x2+x

25 tháng 9 2016

bạn ơi ko cụ thể ra nữa được sao?

 

1 tháng 11 2020

a,\(8x^2-8xy+2x=2x\left(4x-8y+1\right)\)

b,\(\left(x^2+2x\right)\left(x^2+4x+3\right)-24=x\left(x+2\right)\left(x+1\right)\left(x+3\right)-24\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-24=\left(t+1\right)\left(t-1\right)-24=t^2-5^2=\left(t+5\right)\left(t-5\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+3x-4\right)\)( đặt t = x2 + 3x + 1 )

9 tháng 9 2016

Ta có:

x4+2x3+x2+x+1=(x2)2+2.x2.x+x2+x+1

                         =(x2+x)+(x+1)

                         =x2+2x+1

                         =(x+1)2

20 tháng 3 2017

bn ơi, có cái j đó sai sai ở đây thì phải

11 tháng 7 2016

a) \(A=x-x^2=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy Max A = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

b) \(B=2x-2x^2=2\left(x-x^2\right)=-2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\le\frac{1}{2}\)

Vậy Max B = \(\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)

11 tháng 7 2016

B= 2x - 2x^2 - 5​ nha