K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

a) \(\sqrt{\frac{1+\cos x}{1-\cos x}}-\sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{\sqrt{\left(1+\cos x\right)^2}-\sqrt{\left(1-\cos x\right)^2}}{\sqrt{\left(1-\cos x\right)\left(1+\cos x\right)}}\)

\(=\frac{1+\cos x-1+\cos x}{\sqrt{1-\cos^2x}}=\frac{2\cos x}{\sqrt{\sin^2x}}=\frac{2\cos x}{\sin x}=2\cot x\)

b) \(\frac{1}{\tan x+1}+\frac{1}{\cot x+1}=\frac{\tan x+1+\cot x+1}{\left(\tan x+1\right)\left(\cot x+1\right)}\)

\(=\frac{\tan x+\cot x+2}{\tan x+\cot x+\tan x.\cot x+1}=\frac{\tan x+\cot x+2}{\tan x+\cot x+2}=1\)

c) (ko bt có sai đề ko, làm mãi ko ra) 

d) \(\sin^21^0+\sin^22^0+\sin^23^0+...+\sin^289^0\)

\(=\left(\sin^21^0+\sin^289^0\right)+\left(\sin^22^0+\sin^288^0\right)+...+\sin^245^0\)

\(=\left[\left(\sin^21^0-\cos^289^0\right)+\left(\sin^289^0+\cos^289^0\right)\right]+\)

\(\left[\left(\sin^22^0-\cos^288^0\right)+\left(\sin^288^0+\cos^288^0\right)\right]+...+\sin^245^0\)

\(=\left(0+1\right)+\left(0+1\right)+...+\frac{\sqrt{2}}{2}=\frac{44+\sqrt{2}}{2}\)

15 tháng 2 2016

Nếu ko cần trình bày thì dùng Pascal mà làm

 

13 tháng 10 2019

bạn ghi rõ đề ra được không

a: \(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{2x^2-x^3}{x^2-3x}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

b: \(=\dfrac{2x-1}{2x+1}:\left(2x-1+\dfrac{2-4x}{2x+1}\right)\)

\(=\dfrac{2x-1}{2x+1}:\dfrac{4x^2-1+2-4x}{2x+1}\)

\(=\dfrac{2x-1}{4x^2-4x+1}=\dfrac{1}{2x-1}\)

c: \(=\left(\dfrac{1}{1-x}-1\right):\left(x+1-\dfrac{2x-1}{x-1}\right)\)

\(=\dfrac{1-1+x}{1-x}:\dfrac{x^2-1-2x+1}{x-1}\)

\(=\dfrac{-x}{x-1}\cdot\dfrac{x-1}{x\left(x-2\right)}=\dfrac{-1}{x-2}\)

21 tháng 7 2015

Dễ dàng chứng minh điều sau bằng biến đổi tương đương:\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng: 

\(M=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2015}-\frac{1}{2016}\)

\(=2016-\frac{1}{2016}\)

 

30 tháng 7 2019

Gọi vế trái BPT là A.

Xét biểu thức tổng quát:

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{\left[n\left(n+1\right)\right]^2}}\\ =\frac{\sqrt{n^2\left(n^2+2n+1\right)+n^2+2n+1+n^2}}{n\left(n+1\right)}\\ =\frac{\sqrt{n^4+2n^3+3n^2+2n+1}}{n\left(n+1\right)}\\ =\frac{\sqrt{\left(n^2+n+1\right)^2}}{n\left(n+1\right)}\\ =\frac{n^2+n+1}{n\left(n+1\right)}\\ =\frac{n\left(n+1\right)+n+1-n}{n\left(n+1\right)}\\ =1+\frac{1}{n}-\frac{1}{n+1}\)

Suy ra:

\(A=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+1+...+1\right)+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\right)\) (2018 số hạng 1)

\(=2018+\frac{1}{2}-\frac{1}{2018}< 2018\)

Vậy \(A< 2018\left(đpcm\right)\).

Chúc bạn học tốt nhaok.

30 tháng 7 2019

cảm ơn bạn nhé, mình đag ko bt cách chứng minh biểu thức tổng quát ;)