K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

bạn có cần gấp gáp k?

1 tháng 6 2021

n/n+1 .là phân số tối giản

1 tháng 6 2021

các bạn giúp mình với

1 tháng 6 2021

HGYTTYYRDTETDUYYU44RT8IP9Y635T6Y7U8IOP[]34567890SDFGHJKDFGHJKCVBNM, BN

28 tháng 2 2021

fhehuq3

a) \(\frac{n}{2n+1}\)

Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n;2n+1\right)=1\)

\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản

b) \(\frac{2n+3}{4n+8}\)

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản

7 tháng 2 2016

Để \(A=\frac{12}{3n-1}\) là số nguyên thì 12 ⋮ 3n - 1 ⇒ 3n -1 ∈ Ư ( 12 ) = { + 1 ; + 2 ; + 3 ; + 6 ; + 12 }

3n - 1- 1  1    - 2   2    - 3  3   - 6  6   - 1212  
3n02- 13- 24- 57- 1113
n02/3- 1/31- 2/34/3- 5/37/3- 11/313/3


Thỏa mãn đề bài n { 0; 1 }

Các ý khác làm tương tự
 

 

7 tháng 2 2016

Để D là phân số nguyên thì 6n-3/3n+1 phải là 1 số nguyên

Ta có 6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1 - 5/3n+1=2+ 5/3n+1

Để D có GT nguyên thì 5/3n+1 có GT nguyên hay 5 chia hết cho 3n+1

=> 3n+1 thuộc Ước của 5

=> 3n+1 thuộc {-5;-1;1;5}

=> n thuộc {-2;-2/3;0;4/3}

a) 3;5;11

e) 9;30

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

a)Gọi ƯCLN (\(n+3;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(n+3;2n+5\))=1

\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)

b)Gọi ƯCLN (\(2n+9;3n+14\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(2n+9;3n+14\))=1

\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)

c)Gọi ƯCLN(\(6n+11;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)

\(\Rightarrow4⋮d\)

\(\left(6n+15\right);\left(6n+11\right)⋮̸2\)

\(\Rightarrow d=1\)

⇒ƯCLN(\(6n+11;2n+5\))=1

\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)

d)Gọi ƯCLN(\(12n+1;30n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(12n+1;30n+2\))=1

\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)

e)Gọi ƯCLN(\(21n+4;14n+3\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(21n+4;14n+3\))=1

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)

f) Gọi ƯCLN(\(2n+3;n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(2n+3;n+2\))=1

\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(n+1;3n+2\))=1

\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)